DSSR: an integrated software tool for Dissecting the Spatial Structure of RNA # User Manual for DSSR 2.3.2 (the Basic Version) for noncommercial use only Last updated: September 15, 2021 modified nucleotide, non-canonical base pair, helix, stem, coaxial stacking hairpin/internal/junction loop, kink turn, G-quadraplex, i-motif, pseudoknot cartoon-block innovative schematics in PyMOL, SQL-like feature queries in Jmol in silico base mutations, regular helical models, customized rebuilding by Dr. Xiang-Jun Lu (律祥俊) Department of Biological Sciences Columbia University, New York - DSSR is licensed by Columbia University. - DSSR is distributed in two variants: - 1. DSSR Basic covers features described in the three DSSR papers^{1–3} to ensure that reported results can be *fully* reproduced. It is free for academic use. - 2. DSSR Pro includes advanced capabilities for model building, additional features in structural analyses, annotations, and visualizations. It is for paid users only. - This user manual documents DSSR Basic. It is free and open to the public. - The DSSR Pro manual documents the full-featured DSSR. It is available to paid users only. - A brief summary and background information of DSSR can be found in the overview PDF. # **Contents** | 1 | Intr | oductio | on | 4 | |---|------|----------|--|----| | 2 | Dov | vnload a | and installation | 8 | | 3 | Ana | lysis an | nd annotation | 8 | | | 3.1 | | and-line help | 8 | | | 3.2 | Defaul | t run on PDB entry 1msy: detailed explanations | 10 | | | | 3.2.1 | Summary section | 11 | | | | 3.2.2 | Base pairs | 13 | | | | 3.2.3 | Multiplets (higher-order coplanar base associations) | 19 | | | | 3.2.4 | Helices | 22 | | | | 3.2.5 | Stems (canonical pairs with continuous backbones) | 23 | | | | 3.2.6 | Isolated canonical pairs | 23 | | | | 3.2.7 | Base stacks | 24 | | | | 3.2.8 | Atom-base capping interactions | 24 | | | | 3.2.9 | Various loops | 25 | | | | 3.2.10 | Single-stranded fragments | 26 | | | | 3.2.11 | 2D structure in dot-bracket notation | 26 | | | | 3.2.12 | Structural features per nucleotide | 28 | | | | 3.2.13 | Backbone torsion angles and suite names | 29 | | | | | Main chain conformational parameters | 29 | | | | | Virtual torsion angles | 30 | | | | | Sugar conformational parameters | 31 | | | | | Assignment of sugar-phosphate backbone suite names | 32 | | | 3.3 | Defaul | t run on PDB entry 1ehz (tRNA $^{\text{Phe}}$): summary notes | 33 | | | | 3.3.1 | Brief summary | 33 | | | | 3.3.2 | Modified nucleotides | 34 | | | | 3.3.3 | The four triplets | 34 | | | | 3.3.4 | Relationship between helices and stems | 34 | | | | 3.3.5 | Three hairpin loops | 35 | | | | 3.3.6 | One four-way junction loop | 35 | | | | 3.3.7 | Pseudoknot | 36 | | 7 | Ackı | nowledgements | 61 | |---|------|---|-----------| | | 6.4 | What are the differences between DSSR Basic and DSSR Pro? | 61 | | | 6.3 | How is DSSR related to 3DNA? | 60 | | | 6.2 | How does DSSR compare with other tools? | 60 | | | 6.1 | What does DSSR stand for? | 60 | | 6 | Freq | uently asked questions | 60 | | 5 | Mod | leling capabilities | 58 | | | 4.2 | DSSR-PyMOL integration | 58 | | | 4.1 | DSSR-Jmol integration | 58 | | 4 | | alization features | 57 | | | | | | | | | Theprefix option | 57 | | | | Thesymmetry option | 57 | | | | Theidstr option | 56 | | | | Theget-hbond option | 54 | | | 3.11 | Thenmr option | 53 | | | 3.10 | Thepair-only option | 53 | | | 3.9 | Thenon-pair option | 50
52 | | | 3.8 | 3.7.3 Base-pair morphology parameters for helices/stems | 49
50 | | | | 3.7.2 Orientation of helices/stems | 48 | | | | 3.7.1 Extra characterization of base pairs | 47
48 | | | 3.7 | Themore option | 47 | | | 2 7 | 3.6.2 Pseudoknot removal | 46 | | | | 3.6.1 Higher-order pseudoknots | 46 | | | 3.6 | Pseudoknots detection and removal | 44 | | | 3.5 | Identification and characterization of G-quadruplexes | 43 | | | | 3.4.4 Kink turns | | | | | 3.4.3 Ribose zippers | 41 | | | | 3.4.2 A-minor motifs | 38 | | | | 3.4.1 Kissing loops | 38 | | | 3.4 | Default run on PDB entry 1jj2: four auto-checked motifs | 36 | | | | | | ## References 61 # List of Figures | 1 | Definitions of key nucleic acid structural components in DSSR • | 5 | |----|---|----| | 2 | Three- and two-dimensional structure images of PDB entry 1msy | 12 | | 3 | Parallel M+N and antiparallel M-N orientations between two nucleobases | 15 | | 4 | Lenotis-Westhof definition of three edges and the $cis/trans$ orientations | 16 | | 5 | Issues with the three edges in the Leontis-Westhof definition | 17 | | 6 | Six types of $G \cdot A$ pairs involving the minor-groove edge of $G \cdot \ldots \cdot \ldots$ | 19 | | 7 | Pictorial definitions of rigid-body base morphology parameters | 20 | | 8 | Base triplet (GUA) identified in PDB entry 1msy | 21 | | 9 | Common secondary structural elements of RNA | 25 | | 10 | Base pentaplet (AUAAG) identified in PDB entry 1jj2 | 37 | | 11 | Kissing-loop motif identified in PDB entry 1jj2 | 36 | | 12 | Types I and II A-minor motifs identified in PDB entry 1jj2 | 40 | | 13 | Ribose zipper identified in PDB entry 1jj2 | 42 | | 14 | Normal k-turn identified in PDB entry 1jj2 | 43 | | 15 | Schematic representation of G-quadruplexes | 44 | | 16 | Topological descriptors and V-shaped loops of G-quadruplexes | 45 | | 17 | Additional parameters calculated with themore option | 48 | | 18 | DSSR-Jmol featured in the cover image of NAR | 59 | # 1 Introduction As the number of experimentally solved RNA-containing structures grows, it is becoming increasingly important to characterize the geometric features of the molecules consistently and efficiently. Existing RNA bioinformatics tools are fragmented, and suffer in either scope or usability. DSSR¹ is an integrated software tool for Dissecting the Spatial Structure of RNA, designed from ground up to streamline the analyses/annotation of 3D RNA structures. Figure 1 outlines some key algorithms underlying the DSSR program. Figure 1: Definitions of key nucleic acid structural components in DSSR (Reproduced from Figure 1 of the DSSR paper¹). (A) Nucleotides are recognized using standard atom names and base planarity. This method works for both the standard bases (A, C, G, T and U), and those of modified nucleotides, regardless of their tautomeric or protonation states. (B) Bases are assigned a standard reference frame ⁴ that is independent of sequence identity: purines and pyrimidines are symmetrically placed with respect to the sugar. (C) The standard base frame is derived from an idealized Watson-Crick base pair, and defines three base edges (Watson-Crick, minor groove, and Major groove) that are used to classify pairing interactions. (D) Base pairs are identified from the coplanarity of base rings and the occurrence of hydrogen bonds. This geometric algorithm can find canonical (Watson-Crick and G-U wobble) as well as non-canonical pairs. Higher-order (three or more) coplanar base associations, termed multiplets, are also detected. (E) Helices are defined by stacking interactions of base pairs, regardless of pairing type (canonical or otherwise) or backbone connectivity (covalently connected or broken). A helix consists of at least two base pairs. The same algorithm is applied to identify continuous base stacks that are outside of helical regions, by using bases instead of pairs as the assembly unit. Nucleotides not involved in base-stacking interactions are collected into one separate group. A stem is defined as a special type of helix, made up of canonical pairs and with a continuous backbone along each strand. Coaxial stacking is defined by the presence of two or more stems within one helix. An isolated canonical pair is one that is not contained within a stem. (F) 'Closed' loops of various types (hairpin, bulge, internal, and junction loops) are delineated by stems or isolated pairs, and specified by the lengths of the intervening, consecutive nucleotide segments. Starting from an RNA structure in Protein Data Bank (PDB) or PDBx/mmCIF format, DSSR uses standard atom names and base planarity to detect nucleotides, including modified ones (Figure 1A). It employs the standard base reference frame (Figure 1B, C)⁴ and a set of simple geometric criteria (Figure 1D) to identify all existent base pairs (bp): either canonical Watson-Crick (WC) and wobble pairs, or non-canonical pairs with at least one hydrogen bond (H-bond). The latter pairs may include normal or modified bases, regardless of tautomeric or protonation state. DSSR uses the six standard rigid-body bp parameters (shear, stretch, stagger, propeller, buckle, and opening) to rigorously quantify the spatial disposition of any two interacting bases. Where applicable, the program also denotes a bp by common names (e.g., WC, reverse WC, Hoogsteen A+U, reverse Hoogsteen A-U, wobble G-U, sheared G-A, imino G-A, Calcutta U-U, dinucleotide platform), the Saenger classification scheme⁵ of 28 H-bonding types, and the Leontis-Westhof nomenclature⁶ of 12 basic geometric classes. DSSR detects multiplets (triplets or higher-order base associations) by searching horizontally in the plane of the associated bp for further H-bonding interactions. The program determines double-helical regions (Figure 1E) by exploring vertically in the neighborhood of selected bps for base-stacking interactions, regardless of backbone connection (e.g., coaxial stacking of helices). DSSR then identifies hairpin loops, bulges, internal loops, and multi-branch (junction) loops (Figure 1F). The program outputs RNA secondary structure in three commonly used formats—dot-bracket notation (dbn), connectivity table (.ct), and bp sequence (.bpseq)—that can be fed directly into visualization tools such as VARNA⁷. DSSR derives proper dbn for RNA
with higher-order pseudoknots, and it can also produce pseudoknot-free secondary structures. In DSSR, each helix/stem is characterized by a least-squares fitted helical axis, and dinucleotide steps are classified into the most common A-, B- or Z-form double helices (where appropriate) and quantified by helical parameters. DSSR calculates commonly used backbone torsion angles (including the virtual η/θ torsions), classifies the backbone into BI/BII conformations and the sugar into C2'/C3'-endo-like puckers, and assigns the consensus RNA backbone suite names⁸. The program also identifies A-minor interactions, splayed-apart dinucleotide conformations, atom-base capping interactions, ribose zippers, G quadruplexes, i-motifs, kissing loops, U-turns, and k-turns, etc. Furthermore, DSSR reports non-pairing interactions (H-bonding or base-stacking) between two nucleotides, and contacts involving phosphate groups. DSSR has been integrated to Jmol, a widely used Java/JavaScript viewer for 3D structures. The DSSR-Jmol integration² bridges the DSSR command-line analyzing tool and the Jmol molecular viewer together via a simple JSON interface and a powerful query language. Users can now select DSSR-derived RNA structural features (such as base pairs, double helices, and various loops) as easily as they can select protein α -helices and β -strands. Moreover, fine-grained characteristics of these features can be queried via Jmol SQL for DSSR (see the DSSR-Jmol manual). Notably, the novel representation styles (step diagram and base blocks) and coloring schemes bring RNA visualization to an entirely new level (see Figure 3 of the DSSR-Jmol paper). DSSR supersedes the 3DNA suite of programs ^{9–11} for the analysis, rebuilding, and visualization of 3D nucleic acid structures. It has been created from scratch by employing my extensive experience in supporting 3DNA, increased knowledge of RNA structures, and improved C programming skills. The software has a set of unique features not available elsewhere (to the best of my knowledge). By connecting dots in RNA structural bioinformatics, it makes many common tasks simple and advanced applications feasible. DSSR is efficient and robust, with sensible default settings and an intuitive output; thus it is accessible to a much broader audience than the classic 3DNA distribution (up to v2.4). There is actually more to DSSR than meets the eye. DSSR Basic does not contain modeling features, or advanced variations of documented options herein. Please support DSSR by obtaining a paid license from Columbia University for DSSR Pro and the corresponding User Manual. DSSR is being actively maintained and developed. As always, I greatly appreciate user feedback. So far, all reported bugs have always been promptly responded and fixed where appropriate. The program has been checked using all nucleic acid-containing entries in the PDB, without any known issues. Simply put, I strive to make DSSR a practical tool that the user community can count on. When reporting bugs or submitting feature requests, please provide the specific DSSR version you are using (with -v or --version). For example, the version that the manual is based upon corresponds to (x3dna-dssr -v): ``` DSSR: an Integrated Software Tool for Dissecting the Spatial Structure of RNA v2.3.2-2021jun29 by xiangjun@x3dna.org As of version 2, DSSR may be LICENSED from Columbia University. DSSR basic is FREE for academic uses, with ABSOLUTELY NO WARRANTY. DSSR Pro is available for paid academic or commercial users only, and it is actively maintained and continuously improved. This is DSSR *basic*. Advanced features are available in DSSR Pro. ``` ## 2 Download and installation As of version 2.0, DSSR has been licensed by Columbia University for all uses. Please visit the Columbia Technology Ventures (CTV) website on DSSR for details. The CTV distributes DSSR Basic and Pro versions in zip format for macOS, Linux, and Windows. Each zip file contains a DSSR binary executable as well as the associated user manual. The DSSR executable (x3dna-dssr for macOS and Linux, and x3dna-dssr.exe for Windows) is self-contained and does not rely on any third-party libraries. There is no need for any setup or configurations: type x3dna-dssr -h to verify your installation. Note that DSSR is a command-line program: you need a terminal window to run it. DSSR Basic remains free for academic uses, and it comes with ABSOLUTELY NO WAR-RANTY. For long-term stability of the project, DSSR Pro and its corresponding User Manual (in PDF) are available for *paid users* only. The DSSR Pro manual documents (new and enhanced) features not available elsewhere. DSSR is stable in terms of fundamental functionality and main output format. Where possible, I will try to maintain backward compatibility in future releases. If you only need fundamental features, you may not need to bother with frequent updates. DSSR is designed with simplicity and robustness in mind: get the job done, and then stay out of the way. On the other hand, DSSR is being actively maintained and developed, with new features added and known bugs fixed. Users are advised to keep up to date: it is as simple as downloading DSSR again from the CTV website to replace (i.e., overwrite) the old copy. # 3 Analysis and annotation Although the above introduction summarizes DSSR's major functionality in dry, 'abstract' technical terms, using DSSR effectively is very straightforward. This is best illustrated with concrete examples. # 3.1 Command-line help As is the norm of Linux/Unix command-line tools, running DSSR with -h (or --help) provides help information, as shown below (x3dna-dssr -h): Usage: x3dna-dssr [options] ``` Each option is specified via --key[=val] (or -key[=val] or key[=val]; i.e., two/one/zero preceding dashes are all accepted), where 'key' can be in either lower, UPPER or MiXed case. Options can be in any order. Options: Print this command-line help information (-h) --help --help Print this command-line help information—version Print version number and exit (-v) --citation Print preferred citation(s) and exit --input=file Specify a PDB/mmCIF file for analysis (-i=file) --output=file Designate the main DSSR output file (-o=file) --more Report detailed bp and step/helical parameters --more --non-pair Check non-pairing H-bonds/stacking interactions --pair-only Output just base-pairing information [10x faster] --json Generate output in JSON format for easy parsing --nmr Process an ensemble of NMR structures --blocview Generate cartoon/blocks, in extended view, in P --frame Reorient a structure with specified base/pair f Generate cartoon/blocks, in extended view, in PyMOL Reorient a structure with specified base/pair frame --get-hbond Report a list of H-bonds within nucleic acids Examples: x3dna-dssr -i=1msy.pdb x3dna-dssr -i=1msy.cif --more --non-pair \tt x3dna-dssr-i=1ehz.pdb-o=1ehz.out \verb| # yeast phenylalanine tRNA| \\ x3dna-dssr -i=1jj2.pdb -o=1jj2.out # large ribosomal subunit x3dna-dssr -i=5afi.cif -o=5afi.out # ribosome (only in .cif) x3dna-dssr -i=5afi.cif -o=5afi-pairs.out --PAIR-ONLY # 10x faster x3dna-dssr -i=1msy.pdb --json -o=1msy.json # x3dna-dssr -i=1msy.pdb --json | jq .pairs x3dna-dssr -i=5afi.cif --json --pair-only x3dna-dssr -i=2n2d.pdb --nmr --json -o=2n2d-dssr.json x3dna-dssr -i=1msy.pdb --blocview --block-file=wc -o=1msy.pml # load '1msy.pml' into PyMOL for interactive visualization x3dna-dssr -i=1msy.pdb --frame='A.2658-wc-minor' -o=1msy-bp.pdb \# set 1msy into the minor-groove view of the C2658-G2663 pair x3dna-dssr -i=1oct.pdb --get-hbond # H-bonds in DNA (default) x3dna-dssr -i=1oct.pdb --get-hbond=nuc+protein # plus H-bonds in proteins x3dna-dssr snap -h # help for the SNAP module on the interactions of DNA-protein or RNA-protein complexes ``` The above help message should be sufficient to get most users started using DSSR. It is worth noting that the command-line interface is consistent on all operating systems, including the command shell on Windows. DSSR introduces a consistent and flexible way to process command-line options. Here, each option can be specified via a --key[=value] pair, or -key[=value] or key[=value]; i.e., two/one/zero preceding dashes are all acceptable. The key can be in lower, UPPER or MiXed case, and the value is optional for Boolean switches. Moreover, options can be put in any order; if the same key is repeated more than once, the value specified with the last key prevails. Some typical use cases are given below: ``` #1 analyze the PDB entry '1msy', with default output to stdout x3dna-dssr --input=1msy.pdb #2 same as #1, with output directed to file '1msy.out' x3dna-dssr --input=1msy.pdb --output=1msy.out ``` ``` #3-6, same as #2 x3dna-dssr --output=1msy.out --input=1msy.pdb x3dna-dssr --OUTPUT=1msy.out --Input=1msy.pdb x3dna-dssr -output=1msy.out input=1msy.pdb x3dna-dssr output=1msy.out --input=1msy.pdb #7 the value '1ehz.pdb' overwrites '1msy.pdb' x3dna-dssr --input=1msy.pdb input=1ehz.pdb #8-12 with the switch --more set to true x3dna-dssr -input=1msy.pdb --more x3dna-dssr -input=1msy.pdb --more=true x3dna-dssr -input=1msy.pdb --more=yes x3dna-dssr -input=1msy.pdb --more=on x3dna-dssr -input=1msy.pdb --more=1 #13 same as without specifying --more, or with values set to false/no/0 x3dna-dssr -input=1msy.pdb --more=off #14 shorthand forms for --input and --output x3dna-dssr -i=1msy.pdb -o=1msy.out #15 it can also be more verbose x3dna-dssr --input-pdb-file=1msy.pdb #16-19 within a key, separator dash(-) and underscore (_) are treated the same, and can be omitted x3dna-dssr -i=1msy.pdb -non-pair x3dna-dssr -i=1msy.pdb -non_pair x3dna-dssr -i=1msy.pdb -nonpair x3dna-dssr -i=1msy.pdb -nonPair ``` By allowing for two/one/zero dashes to precede each key and a dash/underscore/none to separate words within a key, DSSR provides great versatility in specifying command-line options to fit into a user-preferred style. ## 3.2 Default run on
PDB entry 1msy: detailed explanations The PDB entry 1msy is a small RNA fragment with 27 nucleotides, containing a GUAA tetraloop (GNRA-type) mutant of the sarcin/ricin domain from *E. Coli* 23S rRNA¹² that includes a bulged-G motif (the GpU dinucleotide platform ¹³). This structure contains several features that nicely illustrate fundamental aspects of DSSR. Let the PDB-formatted 3D coordinate file be called 1msy.pdb (as shown below, the PDBx/mmCIF version 1msy.cif works as well), the output file 1msy.out, and leave all other options in their default settings. Then simply run the command: ``` x3dna-dssr -i=1msy.pdb -o=1msy.out x3dna-dssr -i=1msy.cif -o=1msy.out # gives the same results as above ``` The screen output provides a brief summary of the run, as shown below. Note that DSSR starts from a raw .pdb or .cif file as directly downloaded from the PDB, and takes little time to analyze small to mid-size (non-ribosomal) structures. ``` total number of nucleotides: 27 total number of base pairs: 13 total number of helices: 1 total number of stems: 1 total number of isolated WC/wobble pairs: 1 total number of multiplets: 1 total number of atom-base capping interactions: 2 total number of splayed-apart dinucleotides: 1 total number of hairpin loops: 1 total number of internal loops: 1 total number of non-loop single-stranded segments: 2 Time used: 00:00:00:00 ``` For easy reference, Figure 2 shows the 3D structure and the corresponding secondary (2D) structure of 1msy. The schematic 3D structure was automatically generated in schematic blocview representation. The 2D diagram was rendered with VARNA⁷, using DSSR-generated 2D structure in connectivity table format (.ct, see below). The main output file (1msy.out) contains many sections. We will go over them one by one, along the way, explaining the notations used therein. Additionally, DSSR generates the following auxiliary files (named with prefix dssr- by default): ``` List of 13 additional files 1 dssr-pairs.pdb -- an ensemble of base pairs 2 dssr-multiplets.pdb -- an ensemble of multiplets 3 dssr-stems.pdb -- an ensemble of stems 4 dssr-helices.pdb -- an ensemble of helices (coaxial stacking) 5 dssr-hairpins.pdb -- an ensemble of hairpin loops 6 dssr-iloops.pdb -- an ensemble of internal loops 7 dssr-2ndstrs.bpseq -- secondary structure in bpseq format 8 dssr-2ndstrs.ct -- secondary structure in connectivity table format 9 dssr-2ndstrs.dbn -- secondary structure in dot-bracket notation 10 dssr-torsions.txt -- backbone torsion angles and suite names 11 dssr-splays.pdb -- an ensemble of splayed-apart units 12 dssr-stacks.pdb -- an ensemble of base stacks 13 dssr-atom2bases.pdb -- an ensemble of atom-base stacking interactions ``` ## 3.2.1 Summary section ``` Note: By default, each nucleotide is identified by chainId.name#. So a common case would be B.A1689, meaning adenosine #1689 on chain B. One-letter base names for modified nucleotides are put in lower case (e.g., 'c' for 5MC). For further information about the output notation, please refer to the DSSR User Manual. ``` Figure 2: Images of PDB entry 1msy. (A) Schematic 3D structure in block presentation³. (B) 2D diagram produced with VARNA7 using DSSR-derived secondary structure information in .ct format. ``` Questions and suggestions are *always* welcome on the 3DNA Forum. Command: x3dna-dssr -i=1msy.pdb -o=1msy.out File name: 1msy.pdb no. of DNA/RNA chains: 1 [A=27] no. of nucleotides: 685 no. of atoms: no. of waters: 109 no. of metals: ``` The note in the summary section first explains how a nucleotide (nt) is specified in the output file. Typically, a chain id, residue name, and sequence number are sufficient to unambiguously specify a nt. For example, A.G19 means guanosine no. 19 on chain A. In addition to the standard three-letter residue names commonly adopted (as in the PDB), DSSR also uses a one-letter shorthand symbol. For RNA, the four standard nts in three-letter form— $\sqcup \sqcup A$, $\sqcup \sqcup C$, $\sqcup \sqcup G$ and $\sqcup \sqcup \sqcup U$ (where \sqcup stands for a space)—are shortened to A, C, G, and U, respectively. For DNA, the three-letter (one-letter) nts are $\sqcup DA$ (A), $\sqcup DC$ (C), $\sqcup DG$ (G), and $\sqcup DT$ (T), respectively. The one-letter shorthand forms for modified nts, which occur frequently in RNA (e.g., tRNA), are mapped to their canonical counterparts, but put in lower case letters (e.g., c for 5MC). Note that pseudouridine, the most prevalent modified nt in RNA, is denoted P in DSSR and the small case p is reserved for potential modified pseudouridines. The following sections provide more information on notations that are used consistently in DSSR output files. It is worth the time and effort to become familiar with them. In practice, a normal user should have little difficulty following the convention, after going over a few examples. The remaining lines in the summary section should be self-explanatory. The Command: line provides the running DSSR command with relevant options so that the results can be reproduced. The meaning of the Date and time: line is obvious. The File name: line lists the data file analyzed by DSSR, followed by a list of numbers: DNA/RNA chains (here chain A with 27 nts), nts (27), atoms (685), waters (109), and metals (0). In cases with more than one chain or type of metal, the output would be as below (using 1jj2 as an example). ``` no. of DNA/RNA chains: 2 [0=2754,9=122] no. of metals: 210 [Na=86,Mg=117,K=2,Cd=5] ``` Here the first line means that 1jj2 contains two RNA chains: 0 and 9, with 2754 and 122 nts, respectively. The second line indicates the PDB entry includes 210 metal atoms: 86 Na, 117 Mg, 2 K, and 5 Cd. #### 3.2.2 Base pairs DSSR identifies a total of 13 bps, including not only the canonical Watson-Crick (WC) and wobble pairs, but also non-canonical bps (a dinucleotide platform, reverse Hoogsteen, sheared G–A, etc.). ``` List of 13 base pairs LW DSSR nt1 nt2 bp name Saenger U-G -- 1 A.U2647 A.G2673 cWW cW - W 2 A.G2648 A.U2672 G-U Wobble 28-XXVIII cWW cW - W 3 A.C2649 A.G2671 C-G WC 19-XIX cWW cW-W U-A WC 20-XX cWW 4 A.U2650 A.A2670 cW-W 19-XIX C-G WC cWW cW-W 5 A. C2651 A.G2669 6 A.C2652 A.G2668 C-G WC 19-XIX cWW cW-W 7 A.U2653 A.C2667 U-C -- tW. tW-. 8 A.A2654 A.C2666 A+C -- tHH tM+M 9 A.G2655 A.U2656 G+U Platform -- cSH cm+M 10 A.U2656 A.A2665 U-A rHoogsteen 24-XXIV tWH tW-M ``` | 11 A.A2657 | A.G2664 | A-G Sheared | 11-XI | tHS | tM-m | |------------|---------|-------------|--------|-----|------| | 12 A.C2658 | A.G2663 | C-G WC | 19-XIX | cWW | cW-W | | 13 A.G2659 | A.A2662 | G-A Sheared | 11-XI | tSH | tm-M | As the header line (the 2nd in the listing) shows, each bp is characterized by the two constituent nts (nt1 and nt2), and an abbreviated bp type of the form M±N. Here M and N are the one-letter shorthand symbol of the nts, which can be in upper or lower cases (for modified nts), as noted above. The symbol \pm reflects the two possible relative 'face' orientations between the two planar base moieties: the sign is normally - as for canonical WC/wobble bps with opposite faces, and + if one of the two base planes is flipped. Figure 3 provides further details on the rationale of the M±N convention 13 that is used consistently in $3DNA^{9,10}$ and $DSSR^1$. The name column gives the common names of the corresponding bps, where appropriate. Currently, the list includes WC, reverse WC (rWC), Hoogsteen, reverse Hoogsteen (rHoogsteen), wobble, sheared, imino, Calcutta, and dinucleotide platform, and unnamed bps are designated --. Other than WC and wobble pairs, the PDB entry 1msy also contains a GpUpA/GpA miniduplex¹³ characterized by three common bps (nos. 9 to 11): a platform (G+U), a reverse Hoogsteen (U-A), and a sheared (A-G). However, it is difficult to connect those by structures with their familiar names, even for experts. With DSSR-assigned names, one can immediately see common bps and their types within a structure. As it turns out, the name column is also handy to quickly delineate stretches of canonical pairs (e.g., nos 2 to 6 in the listing on Page 13) that form double-helical regions, termed 'stem' in DSSR (see Page 23). The Saenger column provides the classification of 29 bp types with at least two H-bonds between base atoms. This list, initially compiled by Saenger for 28 bps⁵, includes an extra G+C bp added to the list by Burkard et al. in an appendix to the second edition of "The RNA World" book ¹⁴. Note that in addition to the Roman numerals (I to XXIX) originally used by Saenger, the DSSR output also includes the corresponding Arabic numerals (01 to 29), which may be easier for some users to recognize (at least for myself). If a pair cannot be categorized into one of the 29 known types, the symbol -- is assigned. The LW column in the list of base pairs (on Page 13) gives Leontis-Westhof classification of bps⁶. As illustrated in Figure 4 (see below), this classification is based on the three edges of each base with potential for H-bonding interactions (Watson-Crick, Hoogsteen, and Sugar), and the two orientations (cis or trans) of the interacting bases with respect to the glycosidic bonds. The combinations of edges and orientations "gives rise to 12 basic geometric types with at least two H bonds connecting the bases" 6. This geometry-based method captures **Figure 3:** Comparison of the parallel M+N and antiparallel M-N arrangements of G and U bases found in (A) the G+U platform and (B) the G-U wobble pair, respectively. Here G is depicted in green, and U in cyan. For easy comparison, the two pairs are oriented in the standard reference frame of the guanine base, with the shading used to specify the face from which the positive base normal, i.e., z-axis, emanates. The U shares the same face as G in the G+U dinucleotide platform (A); the z-axes of the two bases are parallel, forming a positive dot product expected of M+N pairing. By contrast, the U points in the opposite direction from
G in the G-U wobble pair (B); the z-axes of the two bases are anti-parallel, forming a negative dot product expected of M-N pairing. Note that this M-N nomenclature follows the convention expected for the canonical, antiparallel Watson-Crick base pairs: A-U/A-T and G-C. Figure 4: Base edges and base-pair geometric isomerism. (Upper left) An adenosine showing the three base edges (Watson-Crick, Hoogsteen, and Sugar-edge) available for H-bonding interactions. (Lower left) Representation of an RNA base as a triangle. The position of the ribose is indicated with a circle in the corner defined by the Hoogsteen and Sugar edges. (Right) Cis and trans base-pairing geometries, illustrated for two bases interacting with Watson-Crick edges 6. salient features of bp interactions and strikes a balance between simplicity and expressiveness. The LW scheme is more generally applicable than the Saenger classification, and it is easy to grasp by biologists. As a result, the LW bp classification has become standard in RNA structural bioinformatics. Strictly speaking, however, the RNA-centric LW classification has its limitations (Figure 5). For one thing, the Sugar edge explicitly includes the 2'-hydroxyl group, rendering it less applicable to DNA structures. Moreover, while the aromatic base can be taken as a rigid body with three fixed edges, the χ (chi) torsion angle characterizes the internal freedom between base and sugar (anti/syn). When χ is in the relatively rare but by no means uncommon syn conformation, the Sugar edge, defined by the common anti conformation, no longer seems to exist. The rich variety of RNA bps extends beyond the 12 basic LW types. There are numerous pairs in RNA with only one H-bond or with bifurcated H-bonds, at boundary locations where the LW classification does not strictly apply. Lemieux and Major 15 were the first to extend the LW nomenclature. We noted the importance of the out-of-plane 'backbone edge' formed by an RNA-specific H-bond between O2'(G) and OP2(U)¹³. The RNA 3D Hub website, hosted by the Leontis-Zirbel co-lab, lists non-standard bp interactions ncSW, ntSH, and ntHH for the 1msy entry. Figure 5: Sample cases where the Leontis-Westhof definition of the three edges does not strictly apply. The results of LW/DSSR classifications are those implemented in the DSSR program. In each image, H-bonds are shown as dashed lines, C2' atoms in black dots, and O2' atoms labeled. (A) A Watson-Crick C-G pair in 355d, a standard B-DNA molecule. The sugar-edge for C or G does not have an O2' atom. (B) The Hoogsteen A+U pair in 1jj2. Here, nucleotide 0.A45 is in the syn conformation; thus the O2' atom is pointing away from (instead of towards) the minor-groove edge of the base. (C) The G+U platform (in 1msy) has an out-of-plane 'backbone edge'. (D) The U-C pair (in 1msy) has only one boundary H-bond. Thus, the interacting edge for A.C2667 cannot be unambiguously assigned. The DSSR bp classification is presented in the last column (e.g., cw-w for canonical bps, and cm+M for the G+U dinucleotide platform). Overall, the DSSR scheme follows the pattern of [ct] [WMm] \pm [WMm] (see Figure 1C). Here, [ct] stands for cis/trans, defined by the positioning of the glycosidic bonds related to a line connecting the centers of base-ring atoms; [WMm] for the interacting edges defined with reference to an idealized WC bp: W for the Watson-Crick edge, M for the Major-groove edge, m for the minor-groove edge; \pm for normal (-) vs. flipped (+) base orientations, as noted above. The dot symbol denotes cases where edges or orientations cannot be defined (see bp no. 7 in the list of base pairs on Page 13, and Figure 5(D)). In general, the M in DSSR scheme corresponds to the Hoogsteen/CH-edge (H) in the LW notation, and the m to the LW Sugar-edge (S) if χ is in the *anti* conformation. In the DSSR implementation, we assumes direct correspondences between M/H, and m/S, regardless of the anti/syn base-sugar orientations. Moreover, the LW cis/trans is assigned in the same way as for the DSSR scheme. So the LW and DSSR notations are strictly parallel, excerpt for the extra \pm character in the DSSR classification. The M±N bp notation has been used consistently in 3DNA for over a decade, and a whole section titled 'Base pair parameters' is included in the 2003 3DNA publication⁹. The orientation, combined with the six standard bp parameters (shear, stretch, stagger, buckle, propeller, and opening; see Figure 7) derived from the 3DNA analyze program, can unambiguously characterize any pair. Conversely, given the M±N notation with six corresponding bp parameters, the 3DNA rebuild program can rigorously reconstruct the spatial disposition of the two interacting bases. This reversibility is one of the unique features of 3DNA and can be applied to bps in both DNA and RNA. Even with the increasing popularity of 3DNA, the value of using $M\pm N$ with six parameters to classify bps has never received the attention it deserves, especially in the RNA structural bioinformatics community. The incorporation of bp classifications in DSSR provides an opportunity to emphasize the strength of this approach. In DSSR, the three interacting edges strictly center on a base, which can be taken as a *rigid* body. The standard base reference frame has distinct geometric features to allow for easy identification of the edges (Figure 1C). As is also clear from Figure 1C, for WC pairs, the distinction of the minor-groove vs. the major-groove edges is simply a consequence of the asymmetric glycosidic linkage between the base and sugar moiety. Moreover, the terminology of minor/major grooves is widely used, even in the RNA structure literature: the most obvious being the A-minor motif (see Section 3.4.2). Our recent paper "Effects of noncanonical base pairing on RNA folding: structural context and spatial arrangements of G·A pairs" ¹⁷ in the ACS *Biochemistry* journal highlights the advantages enabled by DSSR to uncover previously unrecognized patterns. The key features **Figure 6:** Six types of G·A pairs, uncovered and characterized by DSSR, that involve the minorgroove edge of G. Top row: three examples in the G–A category with types m–m, m–W, and m–M, respectively; Bottom row: three cases in the G+A category with types m+m, m+W, and m+M, respectively. are summarized in the abstract (see Figure 6), and excerpted below: "The rigorous descriptions of base-pair geometry that we employ facilitate characterization of recurrent geometric motifs and the structural settings in which these arrangements occur. Moreover, the numerical parameters hint at the natural motions of the interacting bases and the pathways likely to connect different spatial forms. We draw attention to higher-order multiplexes involving two or more G-A pairs and the roles these associations appear to play in bridging different secondary structural units." DSSR also produces a file named dssr-pairs.pdb that contains an ensemble of MOD-EL/ENDMDL delineated atomic coordinates for identified bps. Each bp is expressed in its own reference frame for easy and consistent visualization. ## 3.2.3 Multiplets (higher-order coplanar base associations) There is only one multiplet, a triplet, in 1msy, as shown below. **Figure 7:** Pictorial definitions of rigid-body parameters used to describe the geometry of complementary (or non-complementary) base pairs and sequential base pair steps. The base-pair reference frame (lower left) is constructed such that the x-axis points away from the (shaded) minor groove edge of a base or base pair and the y-axis points toward the sequence strand (I). The relative position and orientation of successive base pair planes are described with respect to both a dimer reference frame (upper right) and a local helical frame (lower right). Images illustrate positive values of the designated parameters. ``` List of 1 multiplet 1 nts=3 GUA A.G2655, A.U2656, A.A2665 ``` For each identified multiplet, the serial number (1) is followed by the number of nts (3), the base sequence in one-letter shorthand form (GUA), and a comma-delimited list of the corresponding nts. The G-tetrad motif, which forms the G-quadruplexes, is also detected with DSSR (although not in 1msy); it is simply a special multiplet with four Gs. As for bps, DSSR also generates a file (named dssr-multiplets.pdb by default) for MODEL/ENDMDL delineated multiplets. In the file, each multiplet is set to the most extended view with respect to the base rings. The triplet in 1msy is shown in Figure 8. Note the extensive network of H-bonding interactions between the three nts¹³. **Figure 8:** The GUA triplet identified in 1msy. Here G2655 and U2656 form a G+U dinucleotide platform; U2656 and A2665 form a reverse Hoogsteen pair. The phosphate group of A2665 interacts with the Watson-Crick edge of G2655 with two sequence-specific H-bonds. The image was produced with Jmol. #### 3.2.4 Helices DSSR identifies one helix with 12 bps in 1msy (see below). This section starts with a note explaining the definition of a helix, and other related information. By referring to Figure 2(A), one can immediately see the duplex formed by base-stacking interactions, starting from the very bottom of the structure all the way up to the sheared G–A pair at the top (part of the GUAA tetraloop). Note that by definition, a helix is composed of at least two stacked bps. ``` List of 1 helix Note: a helix is defined by base-stacking interactions, regardless of bp type and backbone connectivity, and may contain more than one stem. helix#number[stems-contained] bps=number-of-base-pairs in the helix bp-type: '|' for a canonical WC/wobble pair, '.' otherwise helix-form: classification of a dinucleotide step comprising the bp above the given designation and the bp that follows it. Types include 'A', 'B' or 'Z' for the common A-, B- and Z-form helices, '.' for an unclassified step, and 'x' for a step without a continuous backbone.
helix#1[1] bps=12 strand-1 5'-UGCUCCUAUACG-3' bp-type strand-2 3'-GUGAGGCCAGGA-5' helix-form ..AAA..x... U-G -- -- cWW cW-W G-U Wobble 28-XXVIII cWW cW-W C-G WC 19-XIX cWW cW-W 1 A.U2647 A.G2673 2 A.G2648 A.U2672 A.G2671 3 A.C2649 A.A2670 A.G2669 4 A.U2650 U-A WC 20-XX cWW C-G WC 19-XIX 5 A.C2651 cWW cW-W 6 A.C2652 A.G2668 C-G WC 19-XIX cWW cW-W U-C -- 7 A.U2653 A.C2667 tW. A.C2666 A+C -- 8 A.A2654 tHH tM+M 9 A.U2656 A.A2665 U-A rHoogsteen 24-XXIV tWH A-G Sheared tHS 10 A.A2657 11-XI A.G2664 tM-m 11 A.C2658 A.G2663 C-G WC 19-XIX cWW cW-W 12 A.G2659 A.A2662 G-A Sheared 11-XI tSH tm-M ``` Of the 13 bps listed on Page 13, only the G+U dinucleotide platform formed by G2655 and U2656 is not contained in the helix. Since U2656 also forms a reverse Hoogsteen U-A pair with A2665 (as part of the triplet, see Figure 8), and the U-A bp is included in the helix, only the so-called bulged G (i.e., G2655) is excluded. The helix-form subsection (lines with strand-1, by-type, strand-2, and helix-form, respectively) gives a quick summary of the stacked bps: base sequences, bp types (canonical or otherwise), and helix conformations of the dinucleotide steps. Needless to say, the A-form helix is the most common type for RNA. However, since DSSR can be equally applied to DNA, the B- and Z-forms would also be included in the classification. ### 3.2.5 Stems (canonical pairs with continuous backbones) In DSSR, a stem is defined as a helix consisting of only canonical WC/wobble pairs and possessing a continuous backbone along each strand. The literature does not appear to be consistent as to what constitutes a helix, stem, or arm. Hopefully DSSR will help to clarify the confusion in the field. The default requirement for canonical bps in DSSR follows the convention widely adopted for RNA secondary structures, as in the mfold/UNAFold software and the ViennaRNA Package. The PDB entry 1msy contains one stem with five canonical bps, as shown below (see also Figure 2(B)). Notice how the bp names and the helix-form sub-section on Page 22 facilitate a quick visual identification of the stem in the helix. ``` List of 1 stem Note: a stem is defined as a helix consisting of only canonical WC/wobble pairs, with a continuous backbone. stem#number[#helix-number containing this stem] Other terms are defined as in the above Helix section. stem#1[#1] bps=5 strand-1 5'-GCUCC-3' bp-type strand-2 3'-UGAGG-5' helix-form .AAA G-U Wobble 1 A.G2648 A.U2672 28-XXVIII cWW cW-W 2 A.C2649 A.G2671 C-G WC 19-XIX cWW cW-W 3 A.U2650 U-A WC cWW cW-W A.A2670 20-XX 4 A.C2651 A.G2669 C-G WC 19-XIX cWW cW-W 19-XIX cWW 5 A.C2652 A.G2668 C-G WC ``` ### 3.2.6 Isolated canonical pairs DSSR defines an isolated canonical bp as the one that is not part of a stem. In 1msy, A.C2658 and A.G2663 form such an isolated C-G WC pair, as detailed below. The [#1] at the beginning means this pair is part of helix #1. Note also the negative indices for isolated canonical bps vs. the positive values for stems. The significance of the distinction will become obvious later on, as internal and hairpin loops are specified. ``` List of 1 isolated WC/wobble pair Note: isolated WC/wobble pairs are assigned negative indices to differentiate them from the stem numbers, which are positive. [#1] -1 A.C2658 A.G2663 C-G WC 19-XIX cWW cW-W ``` ### 3.2.7 Base stacks DSSR defined a base stack as an ordered list of nucleotides assembled together via base-stacking interactions, regardless of backbone connectivity or pairing involvement. Stacking interactions within a stem are **not** included by default. In 1msy, note the UAA stack (no. 2 in the listing) in the GUAA tetraloop, and the GGGG stack (no. 4). See Figure 2. Nucleotides not involved in stacking interactions are also listed, if any. ``` List of 5 base stacks Note: a stack is an ordered list of nucleotides assembled together via base-stacking interactions, regardless of backbone connectivity. Stacking interactions within a stem are *not* included. 1 nts=2 GG A.G2648, A.G2673 2 nts=3 UAA A.U2660, A.A2661, A.A2662 3 nts=4 CUAU A.C2652, A.U2653, A.A2654, A.U2656 4 nts=4 GGGG A.G2655, A.G2664, A.G2663, A.G2659 5 nts=6 CAACCG A.C2658, A.A2657, A.A2665, A.C2666, A.C2667, A.G2668 ``` ### 3.2.8 Atom-base capping interactions First described by Quigley and Rich in the tRNA^{Phe} structure¹⁸, the phosphate group (actually the exocyclic OP2 atom) can stack over a base ring to cap a helix. Atom-base capping interactions are often observed in other structural motifs, including U-turns or GNRA tetraloops. In DSSR, the stacking atoms also includes oxygen from water or the sugar moiety. The output for 1msy is given below. Check also the associated PDB file dssr-a2bases.pdb to visualize the findings. ``` List of 2 atom-base capping interactions dv: vertical distance of the atom above the nucleotide base type atom nt dv 1 phosphate OP2@A.A2661 A.G2659 3.04 2 sugar O4'@A.G2664 A.G2663 3.48 ``` Here the type column can be 'phosphate', 'sugar', or 'other'. The meaning of the atom and nt columns should be obvious. As noted on the 2nd line, the dv column gives vertical distance (in Å) of the atom from the nucleotide base. Thus, the first case shows that the OP2 atom of the A2661 phosphate group stacks 3.04 Å over the G2659 base ring. ### 3.2.9 Various loops Commonly occurring RNA loops are illustrated in Figure 9. DSSR identifies all of these different types and further distinguishes symmetric vs. asymmetric internal loops. **Figure 9:** Common 2D structural elements of RNA. Single-stranded fragments at the 5' and 3' ends, and double-helical stems are obvious. 'Closed' loops of various types (hairpin, bulge, internal, and junction loops) are labeled. DSSR finds one hairpin loop and an asymmetric internal loop in 1msy, as detailed below. Note that the list of the 13 nts in the internal loop is too long to fit on the page width. The list is actually written on the same line as nts=13 CUAGUACGGACCG. ``` nts=13 CUAGUACGGACCG A.C2652, A.U2653, A.A2654, A.G2655, A.U2656, A.A2657, A.C2658, A.G2663, A. \hookrightarrow G2664, A.A2665, A.C2666, A.C2667, A.G2668 nts=5 UAGUA A.U2653, A.A2654, A.G2655, A.U2656, A.A2657 nts=4 GACC A.G2664, A.A2665, A.C2666, A.C2667 ``` With the note at the top and by referring to Figure 2(B), it should be straightforward to understand the meaning of most of the items in this section. Nevertheless, the two sets of matched brackets are worth further explanation. The hairpin loop contains a total of 6 nts, including the closing canonical pair: the [4] means 4 nts, i.e., a tetraloop; the [#-1] indicates that the tetraloop is closed by the first isolated pair. The asymmetric internal loop contains 13 nts in total: the [5,4] means 5 nts along one strand, and 4 nts on the other; [#1,#-1] indicates that the internal loop is linked by the first stem and the first isolated pair. ### 3.2.10 Single-stranded fragments DSSR also characterizes single-stranded fragments not included in various loop regions. For 1msy, there are two, each consisting of one terminal nucleotide (see also Figure 2(B)). ``` List of 2 non-loop single-stranded segments 1 nts=1 U A.U2647 2 nts=1 G A.G2673 ``` #### 3.2.11 2D structure in dot-bracket notation The DSSR-derived 2D structure is written in an extended dot-bracket notation (dbn) with information for pseudoknots (as matched [], {}, or \Leftrightarrow pairs, etc) and chain breaks (as &s), which can be fed directly into VARNA⁷. The dbn is written in FASTA format where the title line (with a > on the first column) is followed by base sequence and the 2D structure, each on a separate line. The dbn for 1msy is as follows. ``` Secondary structures in dot-bracket notation (dbn) as a whole and per chain >1msy nts=27 [whole] UGCUCCUAGUACGUAAGGACCGGAGUG .(((((....(...)...))))). >1msy-A #1 nts=27 0.30(2.47) [chain] RNA UGCUCCUAGUACGUAAGGACCGGAGUG .(((((....(...)...))))). ``` Since 1msy contains only a single continuous chain, the dbn contents for the whole and per chain are the same. For the Dickerson DNA dodecamer ¹⁹ structure 355d, the difference in contents between the whole structure and each chain is obvious from the directions of the brackets (see below). ``` Secondary structures in dot-bracket notation (dbn) as a whole and per chain >355d nts=24 [whole] CGCGAATTCGCG&CGCGAATTCGCG >355d-A #1 nts=12 3.21(0.51) [chain] DNA CGCGAATTCGCG ((((((((((>355d-B #2 nts=12 3.37(0.50) [chain] DNA CGCGAATTCGCG))))))))))))) ``` DSSR also generates a file named dssr-2ndstrs.dbn containing the 2D structure for the whole molecule in dbn notation. For better connection to third-party tools, DSSR produces an additional file named dssr-2ndstrs.ct, which expresses the 2D structure in connectivity table (.ct) format. First introduced by the mfold program, the .ct format is one of the most commonly used RNA 2D structure formats. The .ct output file for 1msy is listed below. Moreover, DSSR also generates a 2D structure representation in the .bpseq format in a file named dssr-2ndstrs.bpseq. ``` 27 ENERGY = 0.0 [1msy] -- secondary structure derived by DSSR 1 U 0 2 0 2647 # name=A.U2647 26 2648 # name=A.G2648, pairedNt=A.U2672 2 G 1 3 25 2649 # name=A.C2649, pairedNt=A.G2671 3 C 4 U 3 5 24 2650 # name=A.U2650, pairedNt=A.A2670 23 2651 # name=A.C2651, pairedNt=A.G2669 5 C 4 6 22 2652 # name=A.C2652, pairedNt=A.G2668 6 C 5 7 8 7 U 0 2653 # name=A.U2653 6 0 2654 # name=A.A2654 8 A 7 9 G 0 2655 # name=A.G2655 8 10 0 2656 # name=A.U2656 0 2657 # name=A.A2657 10 U 9 11 11 A 10 12 12 C 17 2658 # name=A.C2658, pairedNt=A.G2663 13 11 0 2659 # name=A.G2659 13 G 12 14 0 2660 # name=A.U2660 14 U 15 13 0 2661 # name=A.A2661 0 2662 # name=A.A2662 15 A 14 16 16 A 15 17 12 2663 # name=A.G2663, pairedNt=A.C2658 17 G 16 18 18 G 17 19 0 2664 # name=A.G2664 0 2665 # name=A.A2665 19 A 18 20 20 C 2666 # name=A.C2666 19 21 0 0 2667 # name=A.C2667 21 C 20 22 6 2668 # name=A.G2668, pairedNt=A.C2652 22 G 21 23 23 G 22 24 5 2669 # name=A.G2669, pairedNt=A.C2651 24 A 23 25 4 2670 #
name=A.A2670, pairedNt=A.U2650 25 G 3 2671 # name=A.G2671, pairedNt=A.C2649 24 26 26 U 2 2672 # name=A.U2672, pairedNt=A.G2648 25 27 27 G 0 2673 # name=A.G2673 ``` #### 3.2.12 Structural features per nucleotide This section summarizes structural features that each nucleotide possesses or is part of. For each identified nucleotide, the output includes one-letter shorthand name, dbn, residue identifier, the rmsd of the base ring atoms, and a comma-separated list of features: anti or $syn(\chi)$ orientation, C2' or C3'-endo sugar puckering, BI or BII backbone, modified or not, if involved in canonical or non-canonical pair, multiplet, helix, stem, or various loops, etc. ``` Summary of structural features of 27 nucleotides Note: the first five columns are: (1) serial number, (2) one-letter shorthand name, (3) dbn, (4) id string, (5) rmsd ("zero) of base ring atoms fitted against those in a standard base reference frame. The sixth (last) column contains a comma-separated list of features whose meanings are mostly self-explanatory, except for: turn: angle C1'(i-1)--C1'(i)--C1'(i+1) < 90 degrees break: no backbone linkage between 03'(i-1) and P(i) 1 U . A.U2647 0.011 anti, ~C3'-endo, non-canonical, non-pair-contact, helix-end, ss-non-loop 2 G (A.G2648 0.012 anti, ~C3'-endo, BI, canonical, non-pair-contact, helix, stem-end C (A.C2649 0.019 anti, ~C3'-endo, BI, canonical, non-pair-contact, helix, stem U (A.U2650 0.019 anti, ~C3'-endo, BI, canonical, non-pair-contact, helix, stem 5 C (A.C2651 0.024 anti, ~C3'-endo, BI, canonical, non-pair-contact, helix, stem 6 C (A.C2652 0.032 anti,~C3'-endo,BI,canonical,non-pair-contact,helix,stem-end,internal-loop 7 U . A.U2653 0.019 anti,~C3'-endo,non-canonical,non-pair-contact,helix,internal-loop,phosphate 8 A . A.A2654 0.019 anti, ~C2'-endo, BII, non-canonical, non-pair-contact, helix, internal-loop 9 \quad \text{G} \quad \text{A.G2655} \quad \text{0.022} \quad \text{turn,anti,} \\ \text{C2'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C2'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C3'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C4'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C6'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C6'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C6'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C7'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C8'-endo,non-canonical,non-pair-contact,multiplet,internal-loop} \\ \text{C8'-endo,non-canonical,non 10 U . A.U2656 0.020 anti,~C3'-endo,BI,non-canonical,non-pair-contact,helix,multiplet,internal-loop → ,phosphate 11 A . A.A2657 0.023 anti,~C3'-endo,BI,non-canonical,non-pair-contact,helix,internal-loop 12 \quad \texttt{C (A.C2658} \\ \qquad \texttt{0.013} \\ \quad \texttt{anti, ``C3'-endo,BI, isolated-canonical, non-pair-contact, helix, hairpin-loop, and the contact of th → internal-loop 13 G . A.G2659 0.033 u-turn,anti,~C3'-endo,BI,non-canonical,non-pair-contact,helix-end,hairpin-loop \hookrightarrow ,cap-acceptor,splayed-apart 14 U . A.U2660 0.020 turn,u-turn,anti,~C3'-endo,non-pair-contact,hairpin-loop,splayed-apart 15 A . A.A2661 0.015 u-turn, anti, ~C3'-endo, BI, non-pair-contact, hairpin-loop, cap-donor, phosphate 0.010 u-turn, anti, ~C3'-endo, BI, non-canonical, non-pair-contact, helix-end, hairpin-loop 16 A . A.A2662 → ,phosphate 17 \quad \text{G) A.G2663} \qquad \text{0.019} \quad \text{anti, $\tilde{\ }$C3'-endo,BI, isolated-canonical,non-pair-contact,helix,hairpin-loop,helix} \\ → internal -loop, cap-acceptor 18 G . A.G2664 0.014 anti,~C3'-endo,BI,non-canonical,non-pair-contact,helix,internal-loop,cap-donor 19 A . A.A2665 0.014 anti, ~C3'-endo, BI, non-canonical, non-pair-contact, helix, multiplet, internal-loop \hookrightarrow , phosphate 20 C . A.C2666 0.016 anti,~C3'-endo,BI,non-canonical,non-pair-contact,helix,internal-loop,phosphate C . A.C2667 0.029 anti, ~C3'-endo,BI,non-canonical,non-pair-contact,helix,internal-loop 22 G) A.G2668 0.012 anti, ~C3'-endo, BI, canonical, non-pair-contact, helix, stem-end, internal-loop 23 G) A.G2669 0.020 anti,~C3'-endo,BI,canonical,non-pair-contact,helix,stem 24 A) A.A2670 0.019 anti,~C3'-endo,BI,canonical,non-pair-contact,helix,stem 25 G) A.G2671 0.023 anti,~C3'-endo,BI,canonical,non-pair-contact,helix,stem 26 U) A.U2672 0.024 anti,~C3'-endo,BI,canonical,non-pair-contact,helix,stem-end 27 G . A.G2673 0.010 anti,~C3'-endo,non-canonical,non-pair-contact,helix-end,ss-non-loop ``` ## 3.2.13 Backbone torsion angles and suite names The auto-generated output file named dssr-torsions.txt contains many commonly used backbone parameters, including torsion angles, sugar puckers, and suite names⁸. Given below is a summary of the sections contained in the file so that users can better understand what DSSR has to offer. Main chain conformational parameters Here the single-stranded Zp (ssZp) parameter is an extension to the original 3DNA Zp for distinguishing different types of duplexes²⁰. Its addition to 3DNA/DSSR has been inspired by the work of Richardson *et al.*²¹, who observed a correlation between the sugar pucker and the perpendicular distance from the 3'-phosphate to the glycosidic bond vector: >2.9 Å for C3'-endo and <2.9 Å for C2'-endo sugars. Note also the classifications of the backbone into BI/BII forms, χ into anti/syn conformations, and sugar into C2'-endo/C3'-endo puckers. The collection of relevant information should prove convenient for identification of key backbone features of potential interest. ``` 03'(i-1)-P-05'-C5' alpha: P-05'-C5'-C4' beta: gamma: 05'-C5'-C4'-C3' C5'-C4'-C3'-O3' delta: epsilon: C4'-C3'-O3'-P(i+1) C3'-03'-P(i+1)-05'(i+1) epsilon-zeta (BI/BII backbone classification) chi for pyrimidines(Y): 04'-C1'-N1-C2; purines(R): 04'-C1'-N9-C4 Range [170, -50(310)] is assigned to anti, and [50, 90] to syn phase-angle: the phase angle of pseudorotation and puckering sugar-type: ~C2'-endo for C2'-endo like conformation, or ~C3'-endo for C3'-endo like conformation Note the ONE column offset (for easy visual distinction) ssZp: single-stranded Zp, defined as the z-coordinate of the 3' phosphorus atom (P) expressed in the standard reference frame of the 5' base; the value is POSITIVE when P lies on the +z-axis side (base in anti conformation); NEGATIVE if P is on the -z-axis side (base in syn conformation) Dp: perpendicular distance of the 3' P atom to the glycosidic bond [Ref: Chen et al. (2010): "MolProbity: all-atom structure validation for macromolecular crystallography." Acta Crystallogr D Biol Crystallogr, 66(1):12-21] splay: angle between the bridging P to the two base-origins of a dinucleotide. ``` There are too many parameters to fit into the page width. The following shows a selected portion of nucleotides in 1msy, with parameters split into two sections. | | nt | alpha | beta | gamma | delta | epsilon | zeta | e-z | |---|-----------|-------|-------|-------|-------|---------|-------|---------| | 5 | C A.C2651 | -62.3 | 173.8 | 46.2 | 84.3 | -154.6 | -71.3 | -83(BI) | | 6 | C A.C2652 | -67.5 | 175.2 | 58.1 | 78.0 | -154.0 | -67.0 | -87(BI) | | 7
8
9
10 | U A.U2653
A A.A2654
G A.G2655
U A.U2656 | -61.8
165.2
-96.2
-72.5 | 167.4
133.8
91.7
157.8 | 55.9
56.7
179.3
37.9 | 82.4
149.4
149.3
91.6 | -149.4
-98.3
-167.2
-141.0 | 55.3
161.4
141.4
-65.6 | 10
5 | 5()
0(BII)
1()
5(BI) | |-----------------------|--|--|---------------------------------------|---|--|--------------------------------------|--|--|---| | 5
6
7
8
9 | nt
C A.C2651
C A.C2652
U A.U2653
A A.A2654
G A.G2655
U A.U2656 | chi
-159.0(anti)
-158.8(anti)
-151.0(anti)
-145.3(anti)
-93.5(anti)
-173.9(anti) | 12.9(0
15.5(0
15.7(0
151.0(0 | -angle 3'-endo) 3'-endo) 2'-endo) 2'-endo) 3'-endo) | ~ C3 ' -
~ C3 ' -
~ C2 ' - e
~ C2 ' - e | endo
endo
endo
endo
endo | ssZp
4.29
4.28
4.00
0.91
2.15
4.35 | Dp
4.58
4.53
4.62
0.92
2.14
4.42 |
splay
24.06
22.84
22.57
43.08
54.21
27.39 | **Virtual torsion angles** Three sets of virtual torsion angles are calculated: one is the most commonly used η/θ pair pioneered by Olson²²; the second is its η'/θ' variant (using the C1' atom instead of C4') later introduced by Pyle et al.²³; and the third (termed η''/θ'') takes advantage of the origin of the base reference frame⁴ in place of the C4' or C1' atom. The set of base-phosphorus virtual torsions is unique to 3DNA/DSSR. ``` C4'(i-1)-P(i)-C4'(i)-P(i+1) eta: theta: P(i)-C4'(i)-P(i+1)-C4'(i+1) [Ref: Olson (1980): "Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking." Macromolecules, 13(3):721-728] eta': C1'(i-1)-P(i)-C1'(i)-P(i+1) theta': P(i)-C1'(i)-P(i+1)-C1'(i+1) [Ref: Keating et al. (2011): "A new way to see RNA." Quarterly Reviews of Biophysics, 44(4):433-466] eta": base(i-1)-P(i)-base(i)-P(i+1) theta": P(i)-base(i)-P(i+1)-base(i+1) eta' theta' eta" theta" nt eta theta U A.U2647 --- --- --- --- --- G A.G2648 172.1 -133.3 -163.5 -131.2 -97.6 162.7 -140.1 -178.0 -138.9 -120.5 2 -93.1 3 C A.C2649 167.0 -148.3 -174.5 -150.1 -122.6 -127.9 4 U A.U2650 165.4 -147.2 177.6 -145.6 -144.3 -123.9 5 C A.C2651 6 C A.C2652 171.3 -142.0 -176.3 -139.3 -142.0 -91.5 172.2 -18.3 -170.0 -63.3 -107.9 46.3 172.0 120.5 135.6 126.4 7 U A.U2653 -99.1 8 A A.A2654 46.3 150.3 -44.2 G A.G2655 24.9 -82.3 59.0 -98.6 9 91.3 10 U A.U2656 170.9 -121.7 163.1 -122.7 161.9 162.1 -127.4 -177.7 -123.2 -126.9 11 A A.A2657 -67.0 159.4 -135.3 -176.0 -135.4 -98.2 167.6 -117.7 -179.4 -160.6 -134.1 12 C A.C2658 -98.2 -106.5 13 G A.G2659 156.9 15.1 -126.1 43.5 -124.9 U A.U2660 21.0 14 -65.2 160.4 -132.0 -169.4 -138.7 -95.8 15 A A.A2661 167.0 -83.0 -174.8 -81.7 -117.0 172.6 -154.0 -148.2 -148.6 -101.2 166.2 166.9 -168.9 147.4 -95.5 A A.A2662 16 -64.2 17 G A.G2663 -97.0 18 G A.G2664 137.9 -155.6 141.6 175.0 164.3 154.7 -178.6 A A.A2665 19 C A.C2666 C A.C2667 -178.4 -125.3 -169.0 -123.0 -153.9 20 164.6 -120.7 -172.9 -116.0 -101.6 21 -71.6 164.9 -150.0 -168.4 -145.8 -97.4 -120.2 G A.G2668 ``` **Sugar conformational parameters** By default, the sugar pucker analysis follows the work of Altona and Sundaralingam²⁴. The phase angle (in the range of 0° to 360°) of pseudorotation is divided equally into ten 36° regions; the two most frequent sugar pucker modes are the C3'-endo [0° , 36°) as in canonical RNA and A-form DNA, and the C2'-endo [144° , 180°) as in standard B-form DNA. Where appropriate, each sugar pucker is assigned into either \sim C3'-endo or \sim C2'-endo (see above in Section 3.2.13 under 'sugar-type') by matching against corresponding fiber models. ``` v0: C4'-O4'-C1'-C2' v1: 04'-C1'-C2'-C3' v2: C1'-C2'-C3'-C4' v3: C2'-C3'-C4'-04' v4: C3'-C4'-O4'-C1' tm: the amplitude of pucker P: the phase angle of pseudorotation [Ref: Altona & Sundaralingam (1972): "Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation." J Am Chem Soc, 94(23):8205-8212] nt vΟ v2 vЗ v4 Р Puckering v1 tm U A.U2647 1 7.5 -34.5 46.2 -43.8 23.1 46.9 9.9 C3'-endo 5.3 C3'-endo G A.G2648 -31.5 -35.5 2 9.5 39.4 16.8 39.6 C A.C2649 -28.3 39.9 12.9 C3'-endo 4.0 -38.4 21.9 40.9 U A.U2650 -2.4 -25.5 41.9 -44.0 29.4 44.9 21.3 C3'-endo 4 5 C A.C2651 4.8 -32.5 45.7 -44.6 25.0 46.9 12.9 C3'-endo 2.9 6 C A.C2652 -29.7 43.8 -44.0 25.9 45.4 15.5 C3'-endo -28.2 42.3 C3'-endo 7 U A.U2653 1.6 -41.3 25.2 44.0 15.7 151.0 C2'-endo 8 A A.A2654 -33.2 44.3 -38.7 20.1 8.5 44.3 -37.3 9 G A.G2655 50.1 -43.9 22.9 8.9 50.0 151.5 C2'-endo 10 12.7 C3'-endo U A.U2656 -32.9 39.6 -33.2 13.3 39.6 0.4 11 A A.A2657 -6.4 -21.7 39.9 -44.5 32.0 44.6 26.5 C3'-endo 17.9 C3'-endo C A.C2658 -0.0 -28.5 44.6 -44.4 28.4 46.9 12 13 G A.G2659 -9.4 -20.6 40.1 -45.3 35.5 46.1 29.4 C3'-endo U A.U2660 14 -8.9 -14.6 31.3 -37.4 29.0 37.0 32.3 C3'-endo 15 A A.A2661 7.2 -28.7 38.3 -35.0 17.5 38.6 8.0 C3'-endo -21.1 18.7 C3'-endo 0.0 -33.9 16 A A.A2662 32.9 21.4 34.8 17 G A.G2663 -7.9 -22.7 42.3 -47.3 35.7 47.8 27.7 C3'-endo C3'-endo 18 G A.G2664 7.4 -33.6 45.9 -43.1 22.1 46.5 9.7 -35.6 45.2 -39.6 18.1 45.4 19 A A.A2665 11.2 4.5 C3'-endo 24.6 42.8 16.0 20 C A.C2666 2.0 -27.6 41.2 -41.2 C3'-endo 21 -30.7 16.5 C3'-endo C A.C2667 1.9 45.7 -46.0 28.2 47.6 7.3 C3'-endo G A.G2668 9.1 -34.4 44.4 -40.9 20.0 44.7 13.0 C3'-endo 23 G A.G2669 4.5 -31.3 45.1 -43.5 24.4 46.3 24 A A.A2670 5.3 -32.9 46.7 -45.3 25.1 47.9 12.6 C3'-endo 25 G A.G2671 7.6 -33.2 44.6 -41.4 21.7 45.2 9.2 C3'-endo 19.2 C3'-endo 26 U A.U2672 -0.3 -23.0 35.9 -37.6 23.6 38.0 ``` ``` 27 G A.G2673 17.1 -39.6 45.4 -37.1 12.9 45.4 357.2 C2'-exo ``` Assignment of sugar-phosphate backbone suite names According to Richardson *et al.*⁸, the backbone suite is defined as the sugar-to-sugar version of a nucleotide (in contrast to the traditional definition as a phosphate-to-phosphate unit). A total of 53 backbone conformer bins have been defined and expressed in mnemonic 2-letter names (e.g., 1a, 5z, with outliers signified by !!). ``` bin: name of the 12 bins based on [delta(i-1), delta, gamma], where delta(i-1) and delta can be either 3 (for C3'-endo sugar) or 2 (for C2'-endo) and gamma can be p/t/m (for gauche+/trans/gauche- conformations, respectively) (2x2x3=12 combinations: 33p, 33t, ... 22m); 'inc' refers to incomplete cases (i.e., with missing torsions), and 'trig' to triages (i.e., with torsion angle outliers) cluster: 2-char suite name, for one of 53 reported clusters (46 certain and 7 wannabes), '__' for incomplete cases, and '!!' for outliers suiteness: measure of conformer-match quality (low to high in range 0 to 1) [Ref: Richardson et al. (2008): "RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution)." RNA, 14(3):465-481] bin cluster suiteness U A.U2647 1 inc Ω 2 G A.G2648 33p 0.052 1a 3 C A.C2649 33p 1a 0.665 U A.U2650 33p 4 0.875 1a C A.C2651 33p 0.871 1a C A.C2652 33p 0.919 6 1a 7 U A.U2653 33p 1a 0.929 8 A A.A2654 32p 5z 0.849 9 G A.G2655 22t 0.730 4s 10 U A.U2656 23p #a 0.842 11 A A.A2657 33p 0.693 1a 12 C A.C2658 33p 1a 0.884 13 G A.G2659 33p 1a 0.894 33p 14 U A.U2660 0.736 1g 15 A A.A2661 33p 1L 0.688 33p 16 A A.A2662 0.692 1a 17 G A.G2663 33t 1 c 0.321 G A.G2664 18 33p 1a 0.878 19 A A.A2665 33t 0.875 1 e 20 C A.C2666 33p 1 a 0.891 21 C A.C2667 33p 0.887 1 a 22 G A.G2668 33p 0.756 1a 23 G A.G2669 33p 0.625 1a 24 A A.A2670 33p 0.914 1a 0.878 25 G A.G2671 33p 1a 26 U A.U2672 33p 0.912 1a G A.G2673 !! Concatenated suite string per chain. To avoid confusion of lower case modified nucleotide name (e.g., 'a') with suite cluster (e.g., '1a'), use --suite-delimiter to add delimiters (matched '()' by default). ``` ``` 1 A RNA nts=27 U1aG1aC1aU1aC1aC1aU5zA4sG# → aU1aA1aC1aG1gU1LA1aA1cG1aG1eA1aC1aC1aG1aG1aA1aG1aU!!G ``` Note that in assigning suite names, the χ torsion angle, which characterizes the relative sugar-base orientation, is not taken into consideration. Moreover, the 53 defined backbone conformer bins are RNA-centric: even for the classic B-DNA Dickerson dodecamer (355d), 16 out of 22 suites (\sim 73%) are classified as outliers (!!). # 3.3 Default run on PDB entry 1ehz (tRNAPhe): summary notes The cloverleaf 2D structure of tRNA has become an iconic image in structural biology. The four stems (the acceptor stem, the D stem, the anti-codon stem, and the T stem) form two halves of the L-shaped tertiary structure through coaxial stacking of two pairs of stems. Yet, other than DSSR, there appear to be no alternative software programs that can neatly delineate the L-shaped 3D vs. the cloverleaf 2D structures of a tRNA molecule from atomic coordinates. The cover image of the manual illustrates DSSR's capability to solve this long-standing problem, using 1ehz, the crystal structure of yeast phenylalanine tRNA, as an example. ## 3.3.1 Brief summary The screen output of a DSSR run on 1ehz (assuming the 3D coordinates file is called 1ehz.pdb) is shown below. Note that DSSR correctly identifies two helices, four stems, three hairpin loops, and one four-way junction loop, among other things. #### 3.3.2 Modified nucleotides The 27-nt long RNA fragment 1msy detailed in Section 3.2 contains only canonical nts (A, C, G, and U). However, 14 out of the 76 nts in tRNA^{Phe} 1ehz are modified (of 11 different types), as listed below. ``` List of 11 types of 14 modified nucleotides nt count list 1 1MA-a 1 A.1MA58 2 2MG-g 1 A.2MG10 3 5MC-c 2 A.5MC40, A.5MC49 1 4 5MU-t A.5MU54 5 7MG-g 2 1 A.7MG46 6 H2U-11 A.H2U16, A.H2U17 7 M2G-g 1 A.M2G26 1 A.OMC32 8 OMC-c 9 OMG-g 1 A.OMG34 10 PSU-P 2 A.PSU39, A.PSU55 11 YYG-g 1 A.YYG37 ``` Details about each of the 11 types of modified nts are: a 3-letter residue name followed by its 1-letter shorthand form (under column nt), its frequency (under column count), and a comma separated enumeration of its occurrences (under column list). For example, 5MC (no. 3) is found twice in 1ehz, with residue numbers 40 and 49, respectively. From its 3-letter residue name, further information about a modified nt can be obtained via RCSB Ligand Explorer. For example, click the link to check H2U (5,6-dihydrouridine-5'-monophosphate). #### 3.3.3 The four triplets DSSR detects four base triplets as listed below. Use Jmol/PyMOL to visualize the output file dssr-multiplets.pdb for verification. ``` List of 4 multiplets 1 nts=3 UAA A.U8, A.A14, A.A21 2 nts=3 AUA A.A9, A.U12, A.A23 3 nts=3 gCG A.2MG10, A.C25, A.G45 4 nts=3 CGg A.C13, A.G22, A.7MG46 ``` ### 3.3.4 Relationship between helices and stems The connection between the two helices and the four stems is available from the main output file, with related portions excerpted below. The meaning of each section should be easy to follow, especially in connection with the tRNA^{Phe} (1ehz) 2D structure image shown on the cover of this manual. ```
helix#1[2] bps=15 helix#2[2] bps=15 stem#1[#1] bps=7 stem#2[#2] bps=4 stem#3[#2] bps=4 stem#4[#1] bps=5 List of 2 coaxial stacks 1 Helix#1 contains 2 stems: [#1,#4] 2 Helix#2 contains 2 stems: [#3,#2] ``` ### 3.3.5 Three hairpin loops As expected, three hairpin loops are identified, with details listed below. ### 3.3.6 One four-way junction loop The four-way junction loop is delineated by the four stems ([#1,#2,#3,#4]), with [2,1,5,0] nucleotides connecting each consecutive stems. This loop is well-documented in literature, forming the core of the cloverleaf: see the cover image on the right, and also the 2015 DSSR paper¹. Note that the junction loop contains four modified nucleotides (2MG10, M2G26, 7MG46, 5MC49), which pose a problem for some RNA structural analysis programs. ``` List of 1 junction 1 4-way junction: nts=16; [2,1,5,0]; linked by [#1,#2,#3,#4] summary: [4] 2 1 5 0 [A.7 A.66 A.10 A.25 A.27 A.43 A.49 A.65] 7 4 4 5 nts=16 UUAgCgCGAGgUCcGA A.U7,A.U8,A.A9,A.2MG10,A.C25,A.M2G26,A.C27,A.G43,A.A44,A.G45,A \[\to .7MG46,A.U47,A.C48,A.5MC49,A.G65,A.A66 nts=2 UA A.U8,A.A9 ``` ``` nts=1 g A.M2G26 nts=5 AGgUC A.A44,A.G45,A.7MG46,A.U47,A.C48 nts=0 ``` #### 3.3.7 Pseudoknot The tRNA^{Phe} 1ehz contains a pseudoknot, due to the formation of the canonical G–C pair between G19 and C56 (see the long cyan line in the 2D representation on the cover image). This pair is conserved and located at the elbow of the L-shaped tertiary structure that brings the D-loop and the T Ψ C-loop together, via essentially a simple kissing loop interaction. The elbow G–C pair has been shown to stack against a base triplet of the T-box riboswitch ²⁵, apparently playing an import role in forming the stem-I-tRNA complex (41ck). In DSSR dbn output, the bps in first-order pseudoknots are designated by matched square brackets, as shown below for 1ehz. For bps in higher-order pseudoknots, matched curly brackets {}, angle brackets <>, or upper-lower case letters (Aa, Bb, Cc etc.) are used. Please refer to Section 3.6 for an example. ## 3.4 Default run on PDB entry 1jj2: four auto-checked motifs The crystal structure of the *Haloarcula marismortui* large ribosomal subunit (1jj2) serves as an example on how DSSR can analyze complicated RNA structures as easily as smaller ones (such as 1msy and 1ehz discussed in previous sections). Let the PDB 3D atomic coordinates file be called 1jj2.pdb, the screen output is shown below. The running time will obviously depend on hardware configurations. ``` total number of junctions: 37 total number of non-loop single-stranded segments: 30 total number of kissing loops: 5 total number of A-minor (types I and II) motifs: 107 total number of eXtended A-minor (type X) motifs: 49 total number of ribose zippers: 46 total number of kink turns: 8 Time used: 00:00:00:37 ``` Notice the large numbers of bps, multiplets, loops (of various types), and four additional motifs—kissing loops, A-minor motifs, ribose zippers, and k-turns—that will be discussed in detail in the following sections. As a side note, DSSR detects an additional base pentaplet (AUAAG, see Figure 10) which was missed using 3DNA⁹. The five nts (A306, U325, A331, A340, and G345), all on chain 0, form five base-base H-bonds as well as four additional H-bonding interactions involving O2′ atoms. Overall, in default settings, DSSR is more sophisticated than the 3DNA find_pair program in identifying bps, multiplets, and double helical regions. **Figure 10:** The additional base pentaplet (AUAAG) identified by DSSR but missed using 3DNA⁹. Here all five nts are derived from chain 0 of 1jj2. The image was produced with PyMOL. #### 3.4.1 Kissing loops The kissing-loop motif is characterized by canonical base-pairing interactions (forming a stem) between two hairpin loops. Five such motifs are identified in 1jj2 as listed below, and no. 5 is illustrated in Figure 11. ``` List of 5 kissing loop interactions 1 isolated-pair #-42 between hairpin loops #51 and #53 2 isolated-pair #-6 between hairpin loops #6 and #8 3 stem #8 between hairpin loops #1 and #3 4 stem #9 between hairpin loops #1 and #3 5 stem #29 between hairpin loops #14 and #57 ``` The stem (#29) referred to above is: ``` stem #29[#15] bps=6 strand-1 5'-CAUCGA-3' bp-type ||||| strand-2 3'-GUAGUU-5' helix-form AAA.. 1 0.C418 C-G WC 0.G2449 19-XIX cWW cW-W A-U WC 2 0.A419 0.U2448 20-XX cWW 2 0.A419 3 0.U420 4 0.C421 5 0.G422 U-A WC C-G WC 20-XX 0.A2447 cWW cW-W 0.G2446 19-XIX cWW cW-W G-U Wobble 0.U2445 28-XXVIII cWW cW-W 0.U2444 6 0.A423 A-U WC 20-XX ``` The two interacting hairpin loops (#14 and #57) are: ``` 14 hairpin loop: nts=9; [7]; linked by [#28] summary: [1] 7 [0.416 0.424] 5 nts=9 GGCAUCGAC 0.G416,0.G417,0.C418,0.A419,0.U420,0.C421,0.G422,0.A423,0.C424 nts=7 GCAUCGA 0.G417,0.C418,0.A419,0.U420,0.C421,0.G422,0.A423 57 hairpin loop: nts=9; [7]; linked by [#145] summary: [1] 7 [0.2442 0.2450] 5 nts=9 GCUUGAUGC 0.G2442,0.C2443,0.U2444,0.U2445,0.G2446,0.A2447,0.U2448,0.G2449,0.C2450 nts=7 CUUGAUG 0.C2443,0.U2444,0.U2445,0.G2446,0.A2447,0.U2448,0.G2449 ``` #### 3.4.2 A-minor motifs The interaction of the minor groove edge of an adenine with the minor groove side of a canonical pair is defined as the A-minor motif¹⁶. This abundant structural motif stabilizes RNA tertiary structures. Depending on the position of the adenine with respect to the interacting pair, the A-minor motif has been further divided into four subtypes. Of these, only two types (I and II) are believed to be adenine-specific, and they are identified by DSSR (see Figure 12). **Figure 11:** One kissing-loop motif identified in 1jj2. Here, one hairpin loop is colored yellow (#14, with nts from 416 to 424 on chain 0), and the other red (#57, with nts from 2442 to 2450 on the same chain). Six base pairs formed between the two loop regions constitute stem #29. The image was produced with Jmol. A new type, designated X (eXtended, for cases other than the classic types I and II), was also identified by DSSR. In types I and II A-minor motifs, the adenine has its minor groove edge facing the minor groove of a canonical pair, and the O2' atom of adenine is involved in H-bonding interactions with the pair. In the miscellaneous type X, the adenine uses its Watson-Crick edge or major-groove edge to interact with the minor groove of a canonical pair, without resorting to the O2' atom. This type of A-minor interactions was reported in the crystal structure of the self-cleaving Pistol ribozyme ²⁶. DSSR is unique in using standard base reference frames (Figure 1B) and bp parameters to characterize A-minor motifs. When applied to 1jj2, a total of 156 A-minor motifs were identified (stored in file dssr-Aminors.pdb), including type X cases. Three sample entries, each for types I, II, and X, are listed below: no. 4 for type I, no. 7 for type II (see also Figure 12), and no. 11 for type X. **Figure 12:** Two types of A-minor motifs presumably to be specific to adenine. (A) Type I, where the O2' and N3 atoms of adenine lie inside the minor-groove edge of the canonical base pair; (B) Type II, where the O2' of adenine lies outside but N3 remains inside the minor-groove edge. The images were produced with Jmol. For each entry, the type (I, II, or X) is followed by the A-minor motif identity first in one-letter shorthand notation (e.g., A|G-C) and then the corresponding full specification of the interacting nts (e.g., 0.A69|0.G54,0.C65). The canonical bp name (WC or wobble) is added at the end. The following two lines list the relative orientation $(+ \text{ or } -)^9$ and the H-bonding interactions that each nt of the canonical pairs has with adenine, respectively. Thus for the type I A-minor motif no. 4 listed above, +0.G54 means that 0.G54 and 0.A69 have similar faces (i.e., the dot product of the z-axes of their base reference frames is positive). Conversely, 0.A69 and 0.C65 have opposite faces, so -0.C65 is placed in the next line. As one can see from the above listing, in type I A-minor motifs the adenine interacts with both nucleotides of the pair. In type II or X, on the other hand, the adenine interacts with only one of paired nucleotides. #### 3.4.3 Ribose zippers First described in the P4-P6 domain of a group I intron²⁷, the ribose zipper is a tertiary interaction that is important for RNA packing. In DSSR, a ribose-zipper motif is defined by two or more (very rare) consecutive H-bonds between ribose 2'-hydroxyl groups from two RNA fragments (see Figure 13). In 1jj2, DSSR detects a total of 46 ribose zippers, all consisting of 2×2 nts. The first twelve zippers are listed below, and the top one is illustrated in Figure 13. ``` List of 46 ribose zippers 1 nts=4 UUAG 0.U26,0.U27,0.A1318,0.G1319 2 nts=4 ACAC 0.A152,0.C153,0.A439,0.C440 3 nts=4 AACC 0.A160,0.A161,0.C769,0.C770 4 nts=4 AGAU 0.A189,0.G190,0.A204,0.U205 5 nts=4 CGAA 0.C208,0.G209,0.A665,0.A666 6 nts=4 UAAA 0.U233,0.A234,0.A436,0.A437 7 nts=4 AACC 0.A242,0.A243,0.C376,0.C377 8 nts=4 AAUG 0.A305,0.A306,0.U325,0.G326 9 nts=4 GAAC 0.G471,0.A472,0.A773,0.C774 10 nts=4 AACC 0.A520,0.A521,0.C637,0.C638 11 nts=4 AACC 0.A551,0.A552,0.C1334,0.C1335 12 nts=4 AACU 0.A565,0.A566,0.C1263,0.U1264 ``` #### 3.4.4 Kink turns The kink-turn (k-turn), first characterized in the large ribosomal subunit of H. marismortui²⁸, is a widespread structural motif in RNA. The motif contains a sharp kink in the RNA helix, with an asymmetric internal loop flanked by C–G bps on one side and sheared G–A bps on the other. The Lilley laboratory established a systematic nomenclature for nucleotides²⁹ and maintains a dedicated database for k-turns. By default, DSSR defines a k-turn motif as an asymmetric internal loop with at least one sheared G–A pair and a large bending angle in the helical axis, among other criteria. The program detects three types of k-turns: normal, reverse, or else (for possible but undecided **Figure 13:** A sample canonical ribose zipper identified in 1jj2. This motif consists of the U26–U27
dinucleotide in one strand, and A1318–G1319 in the other, both on chain 0. The images were produced with Jmol. cases). The normal type includes simple (standard or non-standard) and complex k-turns as defined by Lilley³⁰, as long as they involve asymmetric internal loops. DSSR finds a total of eight k-turns in 1jj2, the first of which (commonly known as *H. marismortui* Kt-7) is listed below and depicted in Figure 14. - The 1st line means that this is a normal k-turn, derived from internal loop #43 (which is delineated by stems #11 and #10). The bending angle between the two stems is 54°. - The 2nd line shows that the canonical helix consists of stem #11, with a C-G pair (0.C93 and 0.G81) closing the internal loop at one end. The non-canonical helix contains stem #10, with a C-G pair (0.C100 and 0.G77) closing the internal loop at the other end. The crucial sheared G-A pair is formed by 0.G97 and 0.A80 (highlighted with thick lines in Figure 14). See reference ²⁹ for nomenclature of C and NC helices in k-turns. - The 3rd and 4th lines list the two strands composing the k-turn. Figure 14: A normal k-turn identified in 1jj2, commonly known as H. marismortui Kt-7. The two strands are colored yellow and red, respectively, for easy visualization of the backbone trajectory. The crucial sheared G-A pair is highlighted with thick lines. The image was produced with Jmol. ## 3.5 Identification and characterization of G-quadruplexes G-quadruplexes (hereafter referred to as G4) are a common type of higher-order DNA and RNA structures formed from G-rich sequences 31-33. The building block of G4 is a tetrad of guanines in a cyclic 'planar' alignment, with four G+G pairs (cW+M type, see Figure 15). A G4 is formed by stacking of G-tetrads and stabilized by cations. G4 structures are polymorphic: the four strands can be parallel or anti-parallel, and loops connecting them can be of different types: lateral (edgewise), diagonal, or propeller (double-chain reversal). Moreover, G4 structures can be intra- or intermolecular, and even contain bulges³⁴. Overall, G4 can take a large variety of topologies. DSSR has a dedicated module that streamlines the analysis, annotations, and visualization of G4 structures. See Figures 15 and 16, and http://g4.x3dna.org/ (DSSR-G4DB: G-quadruplexes auto-curated with DSSR from the PDB). Figure 15: Representative G4 structures. Upper left: atomic structure of G-tetrad, the building block of G4 structures. Here the green 'square' is created by connecting the C1' atoms of the guanosines, and it is used to simplify the representation of G4 structures of PDB entries 2m4p (lower left) and 5dww (right). Note that the asymmetric unit of 5dww contains four biological units, which are coaxially stacked into two columns. #### 3.6 Pseudoknots detection and removal RNA pseudoknot is defined by WC pairing interactions between bases in a hairpin loop and those outside the corresponding stem. Intuitively, WC pairs in pseudoknotted RNAs are not fully nested, but crossed in 2D notation. Pseudoknots are abundant in RNA structures in the PDB, and are known to play essential functional roles ³⁶. However, they possess a challenge to many RNA computational tools, e.g., dynamic programming based prediction of 2D structures. DSSR can characterize pseudoknots of arbitrary complexity in a 3D RNA structure. It also has the capability to remove pseudoknots to produce a nested 2D structure in dbn notation. Figure 16: Five G4 structures with revised topological descriptors 35. It is worth noting that the descriptors for PDB entries 2gku and 2lod as originally reported in Figure 1 of Dvorkin et al. 35 are incorrect. Applying DSSR consistently can correct errors from leading experts who proposed the descriptors in the first place. The structural features were automatically derived by DSSR. The images were rendered with PyMOL. #### 3.6.1 Higher-order pseudoknots Using PDB entry 1ddy³⁷ as an example, here is the relevant DSSR output. Note that 1ddy contains four RNA chains (A, C, E, and G), and DSSR handles each correctly. Here WC pairs in the 2nd order pseudoknots are represented as matched curly brackets {}. For even higher-order pseudoknots, the WC pairs are represented by matched angle brackets <>, and upper-lower case letters (Aa, Bb, Cc, etc.) ``` This structure contains 2-order pseudoknot o You may want to run DSSR again with the '--nested' option which removes pseudoknots to get a fully nested secondary structure representation. Secondary structures in dot-bracket notation (dbn) as a whole and per chain >1ddy nts=140 [whole] GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA&GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA& → GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA&GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA >1ddy-A #1 nts=35 0.46(2.84) [chain] RNA GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA((((.{[[....[[)))...].].}.]].. >1ddy-C #2 nts=35 0.66(2.88) [chain] RNA GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA((((.{[[....[[)))...].].}.]].. >1ddy-E #3 nts=35 0.72(2.88) [chain] RNA GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA((((.{[[....[[)))...].].}.]].. >1ddy-G #4 nts=35 0.54(2.87) [chain] RNA GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA((((.{[[....[[)))...].].}.]].. ``` #### 3.6.2 Pseudoknot removal A closely related issue is pseudoknot removal, a topic nicely summarized by Smit *et al* ³⁸. The --nested (or abbreviated form --nest) option can be used to remove pseudoknots to get a nested 2d structure in dbn. Using PDB entry 1ddy as an example, the relevant DSSR output with option --nested is as follows: #### 3.7 The --more option The --more option triggers additional parameters for several sections, including base pairs, helices, and stems. Since helices/stems share the same format for the added parameters, only an example from stems is shown. In what follows, the excerpted portions are based on PDB entry 1msy with the following DSSR command: ``` x3dna-dssr -i=1msy.pdb --more -o=1msy-more.out ``` #### 3.7.1 Extra characterization of base pairs The G-U wobble pair formed by A.G2648 and A.U2672 (the second bp on Page 13) is used as an example of the additional information provided about bp geometry and H-bonding with the --more option (see Figure 17). - Line no. 1: specification of the bp, as shown previously on Page 13. - Line no. 2: the first bracket [-167.8(anti) C3'-endo lambda=42.1] corresponds to A.G2648, and it contains three items: -167.8(anti) is the χ torsion angle formed by O4'-C1'-N9-C4, C3'-endo is the sugar pucker (as is the norm for RNA), and λ (lambda) is the angle N9-C1'-C1' (A.U2672). The second bracket corresponds to A.U2672: [-152.8(anti) C3'-endo lambda=68.6] with similar meanings for parameters, except that χ is defined by O4'-C1'-N1-C2, and λ is the angle N1-C1'-C1' (A.G2648). - Line no. 3: lengths of three virtual bonds (C1'-C1', N1-N9, C6-C8), and the virtual torsion angle (C1'-N1-N9-C1'). Note here N1 and N9 are general terms, referring to either N1 of pyrimidines (Y: C/U/T) or N9 of purines (R: A/G) as appropriate. Similar conventions apply for the labeling of C6/C8. - Line no. 4: detailed H-bonding information (atom names, types, and H-bond distances in square brackets). - Line no. 5: inter-base-angle (9°), and a set of four 'simple' bp parameters ¹¹ (shear, stretch, buckle and propeller) which are easier to understand than the six rigorous rigid-body parameters (listed below) for non-canonical pairs, especially when opening is ~180°. - Line no. 6: the six rigid-body bp parameters in the order of shear, stretch, stagger, buckle, propeller, and opening (see Figure 7). **Figure 17:** Molecular image of the G–U wobble pair formed by A.G2648 and A.U2672 in 1msy, labeled with additional parameters (bond lengths, angles, and torsions). The image was produced with Jmol. #### 3.7.2 Orientation of helices/stems The additional output contains information about the best-fitted linear helical axis of a helix/stem, derived using a combination of equivalent C1' and RN9/YN1 atom pairs along each strand³⁹. The result for the 1msy stem listed on Page 23 is shown below. ``` helical-rise: 2.60(0.18) helical-radius: 9.12(0.79) helical-axis: -0.776 -0.167 -0.608 point-one: 24.637 21.051 22.830 point-two: 16.686 19.344 16.602 ``` - The helical-rise line, with numbers 2.60(0.18), represents the average helical rise (2.60) between successive nucleotides and its standard deviation (sd, 0.18) in Å. For a perfectly regular DNA/RNA helix, the sd would be zero. RNA models generated with the DSSR fiber module, for example, are characterized by numbers 2.55(0.00). In DSSR, the sd is used to determine if a helix/stem is strongly curved, with a default cutoff of 0.6 Å. If the sd for a helix/stem is over the cutoff (as for the 1msy helix listed on Page 22), a * is appended, serving as a reminder that the best-fitted linear helical axis may not be meaningful. - The helical-radius line, with numbers 9.12(0.79), gives the average and sd of the perpendicular distances from phosphorus atoms (of both strands) to the helical axis. Typically, the mean radius is around 9.2 Å for double helical DNA or RNA. - The helical-axis line, with three numbers -0.776 -0.167 -0.608, provides the normalized helical axis vector (in the original coordinate frame). This vector can be used to calculate DNA bending angles (as in DNA-protein complexes), or to quantify the relative orientation between any two fairly straight helices/stems ¹⁰. - The lines starting with point-one and point-two designate the end points (in the original coordinate frame) of the helical axis of the helix/stem. The two points can be added to the original PDB coordinates file for visualization of the helical axis or for rendering of helical regions as cylinders ^{1,10}. #### 3.7.3 Base-pair morphology parameters for helices/stems The 2nd dinucleotide step consisting of pairs C-G (A.C2649 with A.G2671) and U-A (A.U2650 with A.A2670) in the stems section of 1msy is used here as an example. Six extra lines are
enabled by the --more option. For the definitions of base and step parameters, see Figure 7. ``` 2 A.C2649 A.G2671 C-G WC 19-XIX cWW cW-W [0.09 -0.17 0.02 9.60 -15.93 -2.31] bp1-pars: [0.79 -1.42 3.25 -0.33 7.26 33.48] step-pars: heli-pars: [-3.49 -1.39 2.88 12.42 0.57 34.24] bp2-pars: [0.11 -0.11 0.25 4.92 -16.45 6.33] C1'-based: rise=3.25 twist=33.33 C1'-based: h-rise=2.87 h-twist=34.09 cWW cW-W 3 A.U2650 A.A2670 U-A WC ``` - The bp1-pars line lists the six bp parameters in the order of shear, stretch, stagger, buckle, propeller, and opening for the C-G pair (A.C2649 with A.G2671). - The step-pars line lists the six step parameters in the order of shift, slide, rise, tilt, roll, and twist for the dinucleotide step between pairs C-G (A.C2649 with A.G2671) and U-A (A. U2650 with A. A2670), calculated based on a middle-step frame⁹. - The heli-pars line lists the six helical parameters in the order of x-displacement, y-displacement, helical rise, inclination, tip, and helical twist for the aforementioned dinucleotide step, calculated based on a middle-helical frame⁹. - The bp2-pars line lists the six bp parameters in the order of shear, stretch, stagger, buckle, propeller, and opening for the U-A pair (A.U2650 with A.A2670). - The 1st C1'-based line provides rise and twist derived using the two consecutive C1'-C1' vectors, each defined by a pair in the dinucleotide step. These two parameters are related to the middle-step frame used to calculate the six step parameters listed on the step-pars line. - The 2nd C1'-based line provides helical rise and helical twist derived using the two consecutive C1'-C1' vectors, each defined by a pair in the dinucleotide step. These two parameters are related to the middle-helical frame used to calculate the six helical parameters listed on heli-pars line. ## 3.8 The --non-pair option With the --non-pair option, DSSR identifies H-bonding and base-stacking interactions between two nts, excluding those duos that already form a pair. For 1msy, the running command and relevant results are given below. ``` # ~/Luxes/src/academic/DSSR2-src/x3dna-dssr -i=1msy.pdb --non-pair -o=1msy-nonpair.out List of 30 non-pairing interactions 1 A.U2647 A.G2648 stacking: 1.O(0.5)--pm(>>,forward) interBase-angle=6 connected min-baseDist=3.26 2 A.G2648 A.C2649 stacking: 7.3(4.6)--pm(>>,forward) interBase-angle=5 connected min-baseDist=3.30 3 \text{ A.G2648} \qquad \text{A.G2673} \qquad \text{stacking: } 2.0 \text{(0.2)} --\text{mm} (<>), \text{outward) interBase-angle=2 min-baseDist=3.28} stacking: 2.8(1.1)--pm(>>,forward) interBase-angle=9 connected min-baseDist=3.09 A.U2650 5 A.U2650 A.C2651 stacking: 0.6(0.0)--pm(>>,forward) interBase-angle=7 connected min-baseDist=3.30 6 A.C2651 A.C2652 stacking: 0.5(0.1)--pm(>>,forward) interBase-angle=12 connected min-baseDist=3.30 7 A.C2652 A.U2653 stacking: 5.2(2.6)--pm(>>,forward) interBase-angle=13 connected min-baseDist=3.43 8 A.C2652 A.G2669 stacking: 0.2(0.0)--mm(<>,outward) interBase-angle=7 min-baseDist=3.22 9 A.U2653 A.A2654 stacking: 3.3(2.0)--pp(><,inward) interBase-angle=13 H-bonds[1]: "OP2-02'(hydroxyl)[2.62]" → connected min-baseDist=3.23 10 A.A2654 A.U2656 stacking: 3.7(1.1) --mm(<>,outward) interBase-angle=1 H-bonds[1]: "04'*04'[3.05]" min-baseDist=3.45 11 A.G2655 A.G2664 stacking: 4.4(2.2)--pp(><,inward) interBase-angle=10 H-bonds[2]: "02'(hydroxyl)-06(carbonyl) \hookrightarrow [3.09],02'(hydroxyl)-N1(imino)[3.34]" min-baseDist=3.37 12 A.G2655 A.A2665 interBase-angle=21 H-bonds[2]: "N1(imino)-0P2[2.77],N2(amino)-05'[2.89]" min-baseDist=4.79 13 A.U2656 A.G2664 interBase-angle=7 H-bonds[2]: "OP2-N1(imino)[3.04],OP2-N2(amino)[2.94]" min-baseDist=3.36 14 \text{ A.A2657} \qquad \text{A.C2658} \qquad \text{stacking: } 6.7(2.6) --\text{pm(>>,forward)} \quad \text{interBase-angle=4} \quad \text{connected min-baseDist=3.46} 15 A.A2657 A.A2665 stacking: 3.7(3.3) -- mm(<>,outward) interBase-angle=11 min-baseDist=3.29 A.G2659 stacking: 0.4(0.1)--pm(>>,forward) interBase-angle=10 connected min-baseDist=3.34 16 A.C2658 17 A.G2659 A.A2661 interBase-angle=31 H-bonds[2]: "02'(hydroxyl)-N7[2.60],02'(hydroxyl)-N6(amino)[3.26]" min-baseDist → =3.97 18 A.G2659 A.G2663 stacking: 3.9(1.2)--mm(<>,outward) interBase-angle=4 min-baseDist=3.35 stacking: 7.5(4.2)--pm(>>,forward) interBase-angle=17 connected min-baseDist=3.26 19 A.U2660 20 A.A2661 A.A2662 stacking: 6.3(4.4)--pm(>>,forward) interBase-angle=19 connected min-baseDist=3.38 21 A.G2663 A.G2664 stacking: 2.7(0.6)--pm(>>,forward) interBase-angle=8 connected min-baseDist=3.38 22 A.G2664 A.A2665 interBase-angle=14 H-bonds[1]: "02'(hydroxy1)-04'[2.75]" connected min-baseDist=5.83 23 A.A2665 A.C2666 stacking: 1.6(1.1)--pm(>>,forward) interBase-angle=10 connected min-baseDist=3.18 24 A.C2666 A.C2667 stacking: 4.3(2.1)--pm(>>,forward) interBase-angle=8 connected min-baseDist=3.35 25 A.C2667 A.G2668 stacking: 3.1(1.0)--pm(>>,forward) interBase-angle=7 connected min-baseDist=3.38 26 A.G2668 A.G2669 stacking: 4.3(3.0)--pm(>>,forward) interBase-angle=4 connected min-baseDist=3.28 27 A.G2669 A.A2670 stacking: 4.3(2.9)--pm(>>,forward) interBase-angle=4 connected min-baseDist=3.29 28 A.A2670 A.G2671 stacking: 1.5(1.5)--pm(>>,forward) interBase-angle=6 connected min-baseDist=3.24 29 A.G2671 A.U2672 stacking: 7.4(4.0)--pm(>>,forward) interBase-angle=10 connected min-baseDist=3.22 30 A.U2672 A.G2673 interBase-angle=11 H-bonds[1]: "02'(hydroxyl)-04'[3.37]" connected min-baseDist=3.61 ``` Following 3DNA⁹, DSSR quantifies base-stacking interactions by the area (in Å²) of the overlapped polygon defined by the two bases of the interacting nts, where the base atoms are projected onto the mean base plane. In the output file, values in parentheses measure the overlap areas of base ring atoms only, and those outside parentheses include exocyclic atoms. In DSSR, base-stacking interactions are classified into one of the following four categories: (i) pm(>>,forward), (ii) mp(<<,backward), (iii) mm(<>,outward), and (iv) pp(><,inward). Here p and m represent the plus and minus faces of the base ring, as defined by the direction of the z-axis of the standard base reference frame⁴ (see Figure 1). The symbols (>>, <<, <>, and ><) follow Major et al., except that pm(>>) is called forward instead of upward, and mp(<<) is named backward instead of downward⁴⁰. The term interBase-angle represents the inter-base angle; a value close to zero means that the two bases are nearly parallel. The term connected, if present, means that the two nucleotides are connected by a covalent phosphodiester linkage. The term min-baseDist gives the minimum distance between base atoms. The H-bonding information should be self-explanatory, except for a note on convention: when a pair of donor/donor or acceptor/acceptor atoms fulfills the geometry-based H-bond definition in DSSR, the * symbol is used instead of - to connect the atoms (e.g., entry no. 10: 04'*04'[3.05]). ## 3.9 The --json option The --json option directs DSSR to output results in the standard JSON data exchange format. The single JSON file contains numerous DSSR-derived structural features, including those in the default output, backbone torsions, and H-bonds. The JSON output makes DSSR readily interoperable with other (bioinformatics) tools. Using tRNA^{Phe} 1ehz as an example, let's go over some use cases with the jq command-line JSON processor. ``` x3dna-dssr -i=1ehz.pdb --json -o=1ehz-dssr.json jq . 1ehz-dssr.json # reformatted for pretty output x3dna-dssr -i=1ehz.pdb --json | jq . # the above two steps combined ``` With file 1ehz-dssr.json in hand, one can easily extract DSSR-derived structural features of interest: ``` jq .pairs 1ehz-dssr.json # list of 34 pairs jq .multiplets 1ehz-dssr.json # list of 4 base triplets jq .hbonds 1ehz-dssr.json # list of hydrogen bonds jq .helices 1ehz-dssr.json jq .stems 1ehz-dssr.json # list of nucleotide parameters, including torsion angles and suites jq .nts 1ehz-dssr.json # list of 14 modified nucleotides jq '.nts[] | select(.is_modified)' 1ehz-dssr.json # select nucleotide id, delta torsion, sugar puckering and cluster of suite name jq '.nts[] | {nt_id, delta, puckering, cluster}' 1ehz-dssr.json # same selection as above, but in 'comma-separated-values' (csv) format jq -r '.nts[] | [.nt_id, .delta, .puckering, .cluster] | @csv' 1ehz-dssr.json ``` Here is the result of running jq to select multiplets: ``` { "index": 2, "num_nts": 3, "nts_short": "AUA", "nts_long": "A.A9,A.U12,A.A23" }, { "index": 3, "num_nts": 3, "nts_short": "gCG", "nts_long": "A.2MG10,A.C25,A.G45" }, { "index": 4, "num_nts": 3, "nts_short": "CGg", "nts_short": "CGg", "nts_long": "A.C13,A.G22,A.7MG46" } ``` ## 3.10 The --pair-only option DSSR provides far more features than a typical user normally need. The --pair-only option directs DSSR to output only base-pairing information, the most fundamental aspect in DNA/RNA structural bioinformatics. It can be combined with the --more or --json option. DSSR runs approximately 10 times faster with the --pair-only option than the default. ## 3.11 The --nmr option The --nmr option has been introduced for the analysis of an ensemble of NMR structures, as deposited in the PDB. The input file can be in the .pdb format where each model is delineated with MODEL/ENDMDL, or the .cif format where each ATOM/HETATM record is associated with a model number. Using PDB entry 2n2d as an example, two simple usages are as follows: ``` x3dna-dssr -i=2n2d.pdb --nmr -o=2n2d-model.out x3dna-dssr -i=2n2d.pdb --nmr --json -o=2n2d.json jq '.models[].parameters.num_Gtetrads' 2n2d.json ``` The top-level skeleton of the JSON output is shown below. Note that each member of the models array contains three items: an auto-incremental index (1 to the number of models), the actual model number, and the parameters object which corresponds to the JSON output if the model is analyzed separately. Normally, index and model match each other, as is the case for 2n2d. However, it is conceivable
that models do not start from one, or the numbers are not continuous. In such cases, they will no longer have the same value for each entry. The --json option makes it easy to parse the output of multiple models pragmatically. In addition to NMR structures, trajectories from molecular dynamics (MD) simulations can also be processed. As noted above, DSSR takes only the standard .pdb or .cif format for input. Thus, proprietary binary formats for trajectories from popular MD packages need to be converted to a standard format. The combination of --nmr and --json renders DSSR easily accessible to the MD community. The Pro version of DSSR has a far more efficient engine than the Basic one for pragmatic analyses of MD trajectories. ## 3.12 The --get-hbond option H-bonding interactions are crucial for defining RNA secondary and tertiary structures. DSSR contains a geometrically based algorithm for identifying H-bonds in nucleic-acid or protein structures specified in .pdb or .cif format. Over the years, the method has been continuously refined, and it has served its purpose quite well. This functionality is also directly available through the --get-hbond option. By default, the output only includes H-bonds involving nucleotides. ``` x3dna-dssr -i=1msy.pdb --get-hbond -o=1msy-hbonds.txt ``` Running the above command, the output for 1msy is as listed below. The 1st line is the header ("# H-bonds in '1msy.pdb' identified by DSSR ..."). The 2nd line provides the total number of H-bonds (40) identified in the structure. Afterwards, each line consists of eight space-delimited columns used to characterize a specific H-bond. Using the first H-bond as an example, the meaning of each of the eight columns is detailed below: - 1. The serial number (15), as denoted in the .pdb or .cif file, of the 1st atom of the H-bond. - 2. The serial number (578) of the 2nd atom of the H-bond. - 3. The H-bond index (#1), a serial number from 1 to the total number of H-bonds. - 4. A one-letter symbol showing the atom-pair type (p) of the H-bond. It is p for a donor-acceptor atom pair; o for a donor/acceptor (such as the 2'-hydroxyl oxygen) with any other atom; x for a donor-donor or acceptor-acceptor pair (as in #17); ? if the donor/acceptor status of any H-bond atom is unknown. - 5. Distance between donor/acceptor atoms in Å (2.768). - 6. Elemental symbols of the two atoms involved in the H-bond (0:N). - 7. Identifier of the 1st H-bonded atom (040A.U2647). - 8. Identifier of the 2nd H-bonded atom (N1QA.G2673). ``` # H-bonds in '1msy.pdb' identified by DSSR 15 578 2.768 O:N 04@A.U2647 N1@A.G2673 р 2.776 D:N D6@A.G2648 N3@A.U2672 35 555 #2 р 554 2.826 N:O N1@A.G2648 O2@A.U2672 36 #3 p 537 2.965 O:N O2@A.C2649 N2@A.G2671 #4 р 2.836 N:N N3@A.C2649 N1@A.G2671 56 535 #5 р 58 534 #6 2.769 N:O N4@A.C2649 O6@A.G2671 р 76 513 #7 р 2.806 N:N N3@A.U2650 N1@A.A2670 78 512 #8 3.129 D:N D4@A.U2650 N6@A.A2670 p 95 492 #9 р 2.703 O:N O2@A.C2651 N2@A.G2669 96 490 #10 2.853 N:N N3@A.C2651 N1@A.G2669 р 98 #11 2.987 N:O N4@A.C2651 O6@A.G2669 р #12 115 466 2.817 O:N O2@A.C2652 N2@A.G2668 p 116 464 #13 2.907 N:N N3@A.C2652 N1@A.G2668 p 118 463 #14 2.897 N:O N4@A.C2652 O6@A.G2668 p 123 151 #15 2.622 D:O OP2@A.U2653 D2'@A.A2654 0 135 443 #16 2.898 O:N O2@A.U2653 N4@A.C2667 р #17 3.054 0:0 04'@A.A2654 04'@A.U2656 147 192 х 158 408 #18 2.960 N:O N6@A.A2654 OP2@A.C2666 р 173 188 #19 2.923 0:0 02'@A.G2655 OP2@A.U2656 0 #20 3.093 D:O D2'@A.G2655 D6@A.G2664 173 378 0 #21 3.343 O:N 02'@A.G2655 N1@A.G2664 173 379 2.768 N:O N1@A.G2655 OP2@A.A2665 181 #22 ``` ``` #23 p 183 203 2.754 N:O N2@A.G2655 O4@A.U2656 2.887 N:O N2@A.G2655 O5'@A.A2665 183 387 #24 p 188 379 #25 3.044 O:N OP2@A.U2656 N1@A.G2664 р 381 #26 2.944 O:N OP2@A.U2656 N2@A.G2664 188 200 401 #27 3.122 O:N O2@A.U2656 N6@A.A2665 P 201 398 #28 2.759 N:N N3@A.U2656 N7@A.A2665 р 3.035 N:N N7@A.A2657 N2@A.G2664 220 381 #29 р 371 #30 o 2.963 N:O N6@A.A2657 O2'@A.G2664 223 #31 3.039 N:N N6@A.A2657 N3@A.G2664 223 382 p 242 358 #32 2.821 O:N O2@A.C2658 N2@A.G2663 р 243 356 #33 р 2.890 N:N N3@A.C2658 N1@A.G2663 245 #34 2.887 N:O N4@A.C2658 O6@A.G2663 355 р 258 305 #35 2.604 O:N O2'@A.G2659 N7@A.A2661 0 #36 3.264 O:N O2'@A.G2659 N6@A.A2661 258 308 0 268 315 #37 2.973 N:O N2@A.G2659 OP2@A.A2662 р 2.864 N:N N2@A.G2659 N7@A.A2662 268 327 #38 р 371 390 #39 2.751 0:0 02'@A.G2664 04'@A.A2665 550 566 #40 3.372 0:0 02'@A.U2672 04'@A.G2673 ``` In its default settings (--get-hbond, same as --get-hbond=nuc), DSSR detects 118 H-bonds for 1ehz and 5,809 H-bonds for 1jj2 among nucleotides, respectively. By including protein (or amino) in the option, as in --get-hbond=nuc-protein, the program also outputs H-bonds in proteins or at the RNA/protein interfaces. For 1jj2, DSSR now detects a total of 10,583 H-bonds. Overall, the H-bonding identification method in DSSR is robust and efficient, extensively tested with nucleic-acid-containing structures in the PDB. While there exist dedicated tools for finding H-bonds, such as HBPLUS or HBexplore, DSSR may well server as a pragmatic tool for most applications. ## 3.13 The --idstr option By default, the identifier for nts in DSSR looks like A.U2647. DSSR offers two additional variations, --idstr=long and --idstr=short, to serve different purposes. Shown below are the listings for a 1msy pair, with three --idstr variations. The long id string consists of six components, which are put in strict order, as given below. A complete example—with model number 1, no segid, chain id C, residue name A (for adenosine), sequence number 24, and insertion code L—is 1..C.A.24.L. The corresponding short form is A24. ``` model-number.segid.chain-id.residue-name.residue-number.insertion-code ``` ## 3.14 The --symmetry option By default, DSSR only analyzes the first structure (model) in a given .pdb for .cif file. For x-ray crystal structures, the asymmetric unit may contain only a faction of the biological unit. As an example, the asymmetric unit of PDB entry 4ms9 is single-stranded (4ms9.pdb), while the biological unit is a double helix (4ms9.pdb1). Running DSSR on 4ms9.pdb, or 4ms9.pdb1 with default settings, finds no base pairs. In such cases, one needs to use the --symmetry (short form --symm) option as shown below for the desired result: ``` x3dna-dssr -i=4ms9.pdb1 --symm ``` DSSR just reads ATOM/HETATM records, as provided in the coordinates file. It does not perform auto-expansion of an asymmetric unit into biological unit based on crystallographic symmetric information that may exist in the .pdb or .cif file. Users must supply the biological unit file (4ms9.pdb1) and the specify the --symm option for the desired result. # 3.15 The --prefix option By default, DSSR auxiliary output files are prefixed with dssr, as in dssr-pairs.pdb. The fixed generic names are overwritten on repeated DSSR runs in a directory. With the --prefix=text option, the auxiliary output files will be prefixed by text. For example, with the following command, the auxiliary output files will be named 1ehz-pairs.pdb, etc. ``` x3dna-dssr -i=1ehz.pdb -o=1ehz.out --prefix=1ehz ``` ## 4 Visualization features DSSR can be easily incorporated into other structural bioinformatics pipelines. Over the years, I have been fortunate to collaborate with Robert Hanson and Thomas Holder to connect DSSR to Jmol and PyMOL, respectively. These integrations led to two peer-reviewed articles, "DSSR-enhanced visualization of nucleic acid structures in Jmol" ² and "DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL" ³, both published in *Nucleic Acids Research*. They also exemplify the critical roles that a domain-specific analysis engine may play in general-purpose molecular visualization tools. The DSSR-Jmol integration excels in its SQL-like, flexible searching capability of structural features. The DSSR-PyMOL integration, on the other hand, stands out for the appealing cartoon-block schematics it brings. #### 4.1 DSSR-Jmol integration The "DSSR-Jmol integration" section on the 3DNA Forum contains scripts and data files for reproducing reported results, including the graphical abstract and the cover image (Figure 18). Overall, the DSSR-Jmol integration makes salient features of DSSR readily accessible via Jmol/JSmol, as demonstrated at the website http://jmol.x3dna.org. This work fills a gap in RNA structural bioinformatics. It enables deep analyses and SQL-like queries of RNA structural characteristics, interactively. ## 4.2 DSSR-PyMOL integration The DSSR-PyMOL integration brings unprecedented visual clarity to 3D nucleic acid structures, especially for G-quadruplexes (see Figures 15 and 16). These features can be accessed via four interfaces: the command-line interface, the DSSR plugin for PyMOL, the web application, and the web application programming interface. The easiest way to get started and quickly benefit from this work is via the web application at http://skmatic.x3dna.org. Please refer to the paper³ and the corresponding supplemental PDF for details. The website http://skmatic.x3dna.org has been recommended in Faculty Opinions as "simple and effective", and classified as "Good for Teaching". # 5 Modeling capabilities DSSR Pro comes with three modeling modules: (i) mutate for in silico (base) mutations, (ii) fiber for generating regular helical models, and (iii) rebuild for creating customized PRINT ISSN: 0305-1048 ONLINE ISSN: 1362-4962 # Nucleic Acids Research VOLUME 45 WEB SERVER ISSUE JULY 3, 2017 Figure 18: 3D interactive visualization of selected RNA structural features enabled by the DSSR-Jmol integration (http://jmol.x3dna.org). Clockwise from upper left: Structure of the xpt-pbuX guanine riboswitch in complex with hypoxanthine (PDB entry 4fe5) in 'base blocks' representation. The three-way junction loop encompassing the metabolite (in space-filling representation) is color-coded by base identity: A, red; C, yellow; G, green; U, cyan. The loop-loop interaction at the top is highlighted in red. Structure of the *T.
thermophilus* 30S ribosomal subunit in complex with antibiotics (PDB entry 1fjg) in step diagram. The 16S rRNA is color-coded in spectrum with the 5'-end in blue and the 3'-end in red (upper middle). Structure of the classic L-shaped yeast tRNAPhe (PDB entry 1ehz) in step diagram, with the three hairpin loops highlighted in red and the four-way junction loop in blue (upper right corner). Structure of the Pistol self-cleaving ribozyme (PDB entry 5ktj), showcasing (in red) the horizontal helix in space-filling representation. The helix is composed of six short stems stabilized via coaxial stacking interactions (bottom). structures. They replace the 3DNA mutate_bases, fiber, and rebuild programs, with significantly enhanced features and dramatically improved usability. These features are documented in the DSSR Pro User Manual (licensed to paid users only). # 6 Frequently asked questions #### 6.1 What does DSSR stand for? DSSR stands for Dissecting the Spatial Structure of RNA. It could also mean Defining the Secondary Structure of RNA. Note that DSSR has far more to offer than just defines RNA 2D structures as DSSP does for proteins. The acronym may have other interpretations. ### 6.2 How does DSSR compare with other tools? Dozens of software programs and online resources are currently in use for nucleic acid structural bioinformatics. It is fair to say that each has its unique features and no two tools are identical. Comparative studies as seen in the literature are useful for general understanding of a topic. Without going into technical details, however, such comparisons are mostly superficial and seldomly convincing. See my early paper on "Resolving the discrepancies among nucleic acid conformational analyses" ⁴¹. DSSR is an integrated and automated computational tool designed from the bottom up to streamline RNA structural bioinformatics. It possesses a combined set of functionalities well beyond the scope of any other software tools in the field. As a simple example, users are encouraged to compare DSSR with any other tools on the classic yeast tRNAPhe (1ehz, see Section 3.3). Pay close attention to the fact that 1ehz contains 14 modified nucleotides. Among other features, yeast tRNA^{Phe} has four base triplets, two helices corresponding to the L-shaped tertiary structure, four stems matching the cloverleaf 2D structure, three hairpin loops, and a [2,1,5,0] four-way junction loop. #### 6.3 How is DSSR related to 3DNA? From a historical perspective, DSSR is built upon the 3DNA suite of software programs for the analysis, rebuilding, and visualization of 3D nucleic acid structures 9-11. 3DNA takes advantage of standard base reference frame⁴, enabled by our contributions on resolving the discrepancies among nucleic acid conformational analyses^{41,42}. 3DNA had also benefitted greatly from the SCHNAaP and SCHNArP pair of programs for rigorous analysis and reversible rebuilding of double-helical nucleic acid structures^{39,43}. Specifically, the algorithms that underpinned SCHNAaP/SCHNArP laid the foundation of analyze/rebuild, two core components of the 3DNA suite. Just as 3DNA has replaced SCHNAaP/SCHNArP in functionality and real-world applications, DSSR has superseded 3DNA. Key 3DNA features for analysis, visualization, modeling, and utilities have been integrated into DSSR, with vastly enhanced functionality and significantly improved usability. Notably, the mutate/fiber/rebuild modules in DSSR completely supersedes the mutate_bases, fiber, and rebuild programs distributed with 3DNA v2.4. In short, 3DNA is becoming the past; DSSR is the future. #### 6.4 What are the differences between DSSR Basic and DSSR Pro? DSSR Pro contains more features than documented here for the Basic version. DSSR Pro has advanced modeling modules that are missing in the Basic version. DSSR Pro comes with a comprensive user manual that is currently over 230 pages. DSSR Pro can be taken as X3DNA since it completely supersedes 3DNA v2.4. If you find a feature missing in the Basic version, it is likely to be available in DSSR Pro. Moreover, user support, software maintenance and further development are devoted to DSSR Pro. # 7 Acknowledgements The development of DSSR has been made possible by the NIH grant R01GM096889. I'd like to thank Drs. Wilma Olson and Harmen Bussemaker for helpful discussions. I appreciate the user community for providing feedback. ## References - 1. Lu, X.-J., Bussemaker, H. J., and Olson, W. K. (2015) DSSR: An integrated software tool for dissecting the spatial structure of RNA. *Nucleic Acids Res.*, **43**(21), e142. - 2. Hanson, R. M. and Lu, X.-J. (2017) DSSR-enhanced visualization of nucleic acid structures in Jmol. *Nucleic Acids Res.*, **45**(W1), W528–W533. - 3. Lu, X.-J. (2020) DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. *Nucleic Acids Res.*, **48**(13), e74. - 4. Olson, W. K., Bansal, M., Burley, S. K., Dickerson, R. E., Gerstein, M., Harvey, S. C., Heinemann, U., Lu, X.-J., Neidle, S., Shakked, Z., Sklenar, H., Suzuki, M., Tung, C.-S., Westhof, E., Wolberger, C., and Berman, H. M. (2001) A standard reference frame for the description of nucleic acid base-pair geometry. *J. Mol. Biol.*, **313**(1), 229–237. - 5. Saenger, W. (1984) Principles of nucleic acid structure, Springer advanced texts in chemistrySpringer-Verlag, New York first edition. - 6. Leontis, N. B. and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs. RNA, 7(4), 499–512. - 7. Darty, K., Denise, A., and Ponty, Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. *Bioinformatics*, **25**(15), 1974–5. - 8. Richardson, J. S., Schneider, B., Murray, L. W., Kapral, G. J., Immormino, R. M., Headd, J. J., Richardson, D. C., Ham, D., Hershkovits, E., Williams, L. D., Keating, K. S., Pyle, A. M., Micallef, D., Westbrook, J., and Berman, H. M. (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature. *RNA*, **14**(3), 465–81. - 9. Lu, X.-J. and Olson, W. K. (2003) 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. *Nucleic Acids Res.*, **31**(17), 5108–5121. - 10. Lu, X.-J. and Olson, W. K. (2008) 3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. *Nat. Protoc.*, **3**(7), 1213–1227. - 11. Li, S., Olson, W. K., and Lu, X.-J. (2019) Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. *Nucleic Acids Res.*, **47**(W1), W26–W34. - 12. Correll, C. C., Beneken, J., Plantinga, M. J., Lubbers, M., and Chan, Y.-L. (2003) The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. *Nucleic Acids Res.*, **31**(23), 6806–6818. - 13. Lu, X. J., Olson, W. K., and Bussemaker, H. J. (2010) The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex. Nucleic Acids Res., 38(14), 4868–76. - 14. Gesteland, R. F., Cech, T., and Atkins, J. F. (1999) The RNA world: the nature of modern RNA suggests a prebiotic RNA world, Number 37 in Cold Spring Harbor monograph seriesCold Spring Harbor Laboratory Press, Cold Spring Harbor, NY second edition. - 15. Lemieux, S. and Major, F. (2002) RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. Nucleic Acids Res., 30(19), 4250–63. - 16. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B., and Steitz, T. A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci., **98**(9), 4899–903. - 17. Olson, W. K., Li, S., Kaukonen, T., Colasanti, A. V., Xin, Y., and Lu, X.-J. (2019) Effects of noncanonical base pairing on RNA folding: structural context and spatial arrangements of G·A pairs. *Biochemistry*, **58**(20), 2474–2487. - 18. Quigley, G. and Rich, A. (1976) Structural domains of transfer RNA molecules. Science, **194**(4267), 796–806. - 19. Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R. E. (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U A, **78**(4), 2179–83. - 20. Lu, X. J., Shakked, Z., and Olson, W. K. (2000) A-form conformational motifs in ligandbound DNA structures. J. Mol. Biol., 300(4), 819–40. - 21. Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: allatom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., **66**(1), 12–21. - 22. Olson, W. K. (1980) Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking. Macromolecules, 13(3), 721–728. - 23. Keating, K. S., Humphris, E. L., and Pyle, A. M. (2011) A new way to see RNA. Q. Rev. Biophys., 44(4), 433-66. - 24. Altona, C. and Sundaralingam, M. (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. *J Am Chem Soc*, **94**(23), 8205–12. - 25. Zhang, H., Endrizzi, J. A., Shu, Y., Haque, F., Sauter, C., Shlyakhtenko, L. S., Lyubchenko, Y., Guo, P., and Chi, Y.-I. (2013) Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the phi29 hexameric motor pRNA. RNA, 19(9), 1226–1237. - 26. Nguyen, L. A., Wang, J., and Steitz, T. A. (2017) Crystal structure of Pistol, a class of self-cleaving ribozyme. *Proc Natl Acad Sci USA*, **114**(5), 1021–1026. - 27. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. *Science*, **273**(5282), 1678–85. - 28. Klein, D. J., Schmeing, T. M., Moore, P. B., and Steitz, T. A.
(2001) The kink-turn: a new RNA secondary structure motif. *EMBO J.*, **20**(15), 4214–21. - 29. Lilley, D. M. (2012) The structure and folding of kink turns in RNA. WIREs RNA, **3**(6), 797–805. - 30. Wang, J., Daldrop, P., Huang, L., and Lilley, D. M. J. (2014) The k-junction motif in RNA structure. *Nucleic Acids Res.*, **42**(8), 5322–5331. - 31. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., and Neidle, S. (2006) Quadruplex DNA: Sequence, topology and structure. *Nucleic Acids Res.*, **34**(19), 5402–5415. - 32. Rhodes, D. and Lipps, H. J. (2015) G-quadruplexes and their regulatory roles in biology. *Nucleic Acids Res.*, **43**(18), 8627–8637. - 33. Lightfoot, H. L., Hagen, T., Tatum, N. J., and Hall, J. (2019) The diverse structural landscape of quadruplexes. *FEBS Lett.*, **593**(16), 2083–2102. - 34. Meier, M., Moya-Torres, A., Krahn, N. J., McDougall, M. D., Orriss, G. L., McRae, E. K. S., Booy, E. P., McEleney, K., Patel, T. R., McKenna, S. A., and Stetefeld, J. (2018) Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. *Nucleic Acids Res.*, 46(10), 5319–5331. - 35. Dvorkin, S. A., Karsisiotis, A. I., and Webba da Silva, M. (2018) Encoding canonical DNA quadruplex structure. *Sci. Adv.*, 4(8), eaat3007. - 36. Theimer, C. A., Blois, C. A., and Feigon, J. (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. *Mol. Cell*, **17**(5), 671–682. - 37. Sussman, D., Nix, J. C., and Wilson, C. (2000) The structural basis for molecular recognition by the vitamin B 12 RNA aptamer. *Nat. Struct. Biol.*, **7**(1), 53–57. - 38. Smit, S., Rother, K., Heringa, J., and Knight, R. (2008) From knotted to nested RNA structures: A variety of computational methods for pseudoknot removal. *RNA*, **14**(3), 410–416. - 39. Lu, X.-J., El Hassan, M., and Hunter, C. (1997) Structure and conformation of helical nucleic acids: Analysis program (SCHNAaP). *J. Mol. Biol.*, **273**(3), 668–680. - 40. Parisien, M., Cruz, J. A., Westhof, E., and Major, F. (2009) New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA, 15(10), 1875–1885. - 41. Lu, X. J. and Olson, W. K. (1999) Resolving the discrepancies among nucleic acid conformational analyses. J. Mol. Biol., 285(4), 1563–75. - 42. Lu, X.-J., Babcock, M. S., and Olson, W. K. (1999) Overview of Nucleic Acid Analysis Programs. J. Biomol. Struct. Dyn., 16(4), 833–843. - 43. Lu, X.-J., El Hassan, M., and Hunter, C. (1997) Structure and conformation of helical nucleic acids: Rebuilding program (SCHNArP). J. Mol. Biol., 273(3), 681–691.